1,170 research outputs found

    Accurate light-time correction due to a gravitating mass

    Full text link
    This work arose as an aftermath of Cassini's 2002 experiment \cite{bblipt03}, in which the PPN parameter γ\gamma was measured with an accuracy σγ=2.3×10−5\sigma_\gamma = 2.3\times 10^{-5} and found consistent with the prediction γ=1\gamma =1 of general relativity. The Orbit Determination Program (ODP) of NASA's Jet Propulsion Laboratory, which was used in the data analysis, is based on an expression for the gravitational delay which differs from the standard formula; this difference is of second order in powers of mm -- the sun's gravitational radius -- but in Cassini's case it was much larger than the expected order of magnitude m2/bm^2/b, where bb is the ray's closest approach distance. Since the ODP does not account for any other second-order terms, it is necessary, also in view of future more accurate experiments, to systematically evaluate higher order corrections and to determine which terms are significant. Light propagation in a static spacetime is equivalent to a problem in ordinary geometrical optics; Fermat's action functional at its minimum is just the light-time between the two end points A and B. A new and powerful formulation is thus obtained. Asymptotic power series are necessary to provide a safe and automatic way of selecting which terms to keep at each order. Higher order approximations to the delay and the deflection are obtained. We also show that in a close superior conjunction, when bb is much smaller than the distances of A and B from the Sun, of order RR, say, the second-order correction has an \emph{enhanced} part of order m2R/b2m^2R/b^2, which corresponds just to the second-order terms introduced in the ODP. Gravitational deflection of the image of a far away source, observed from a finite distance from the mass, is obtained to O(m2)O(m^2).Comment: 4 figure

    Power Spectral Density of Magnetization Dynamics Driven by a Jump-Noise Process

    Full text link
    Random magnetization dynamics driven by a jump-noise process is reduced to stochastic magnetic energy dynamics on specific graphs using an averaging technique. An approach to analyzing stochastic energy dynamics on graphs is presented and applied to the calculation of power spectral density of random magnetization dynamics. An eigenvalue technique for computing the power spectral density under specific cases is also presented and illustrated by numerical results

    Hysteresis loops of magnetic thin films with perpendicular anisotropy

    Full text link
    We model the magnetization of quasi two-dimensional systems with easy perpendicular (z-)axis anisotropy upon change of external magnetic field along z. The model is derived from the Landau-Lifshitz-Gilbert equation for magnetization evolution, written in closed form in terms of the z component of the magnetization only. The model includes--in addition to the external field--magnetic exchange, dipolar interactions and structural disorder. The phase diagram in the disorder/interaction strength plane is presented, and the different qualitative regimes are analyzed. The results compare very well with observed experimental hysteresis loops and spatial magnetization patterns, as for instance for the case of Co-Pt multilayers.Comment: 8 pages, 8 figure

    Evaluation of the Integrated Social Prescribing Model in Redbridge

    Get PDF

    Functional Integration Approach to Hysteresis

    Full text link
    A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a generating function g(x) is associated with an individual system, and a hysteresis evolution operator is defined by an appropriate envelope construction applied to g(x), inspired by the overdamped dynamics of systems evolving in multistable free energy landscapes. Second, the average hysteresis response of an ensemble of such systems is expressed as a functional integral over the space G of all admissible generating functions, under the assumption that an appropriate measure m has been introduced in G. The consequences of the formulation are analyzed in detail in the case where the measure m is generated by a continuous, Markovian stochastic process. The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant (homogeneous), the ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis, and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder, and the interpretation of critical state models of superconducting hysteresis.Comment: 36 pages, 9 figures, to be published on Phys. Rev.

    Stochastic model of hysteresis

    Full text link
    The methods of the probability theory have been used in order to build up a new model of hysteresis. It turns out that the reversal points of the control parameter (e. g., the magnetic field) are Markov points which determine the stochastic evolution of the process. It has been shown that the branches of the hysteresis loop are converging to fixed limit curves when the number of cyclic back-and-forth variations of the control parameter between two consecutive reversal points is large enough. This convergence to limit curves gives a clear explanation of the accommodation process. The accommodated minor loops show the return-point memory property but this property is obviously absent in the case of non-accommodated minor loops which are not congruent and generally not closed. In contrast to the traditional Preisach model the reversal point susceptibilities are non-zero finite values. The stochastic model can provide a good approximation of the Raylaigh quadratic law when the external parameter varies between two sufficiently small values.Comment: 13 pages, 14 figure

    Dynamic hysteresis from zigzag domain walls

    Get PDF
    We investigate dynamic hysteresis in ferromagnetic thin films with zigzag domain walls. We introduce a discrete model describing the motion of a wall in a disordered ferromagnet with in-plane magnetization, driven by an external magnetic field, considering the effects of dipolar interactions and anisotropy. We analyze the effects of external field frequency and temperature on the coercive field by Monte Carlo simulations, and find a good agreement with the experimental data reported in literature for Fe/GaAs films. This implies that dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking domain nucleation.Comment: 10 pages, 13 figures; minor modifications and two figures adde

    The effect of the motion of the Sun on the light-time in interplanetary relativistic experiments

    Full text link
    In 2002 a measurement of the effect of solar gravity upon the phase of coherent microwave beams passing near the Sun has been carried out with the Cassini mission, allowing a very accurate measurement of the PPN parameter γ\gamma. The data have been analyzed with NASA's Orbit Determination Program (ODP) in the Barycentric Celestial Reference System, in which the Sun moves around the centre of mass of the solar system with a velocity v⊙v_\odot of about 10 m/sec; the question arises, what correction this implies for the predicted phase shift. After a review of the way the ODP works, we set the problem in the framework of Lorentz (and Galilean) transformations and evaluate the correction; it is several orders of magnitude below our experimental accuracy. We also discuss a recent paper \cite{kopeikin07}, which claims wrong and much larger corrections, and clarify the reasons for the discrepancy.Comment: Final version accepted by Classical and Quantum Gravity (8 Jan. 2008

    Key barriers to community cohesion: views from residents of 20 London deprived neighbourhoods

    Get PDF
    The notion of community has been central to the political project of renewal of New Labour in the UK. The paper explores how the discourses of community are framed within New Labour and discusses these in the light of the results from research which focuses on how people within urban deprived areas construct their community. It draws upon the results of one part of a larger research project (the ‘Well London’ programme) which aimed to capture the views of residents from 20 disadvantaged neighbourhoods throughout London using an innovative qualitative method known as the ‘World Café’. Our results show the centrality of young people to the development of cohesive communities, the importance of building informal relationships between residents alongside encouraging greater participation to policy making, and the need to see these places as fragile and temporary locations but with considerable social strengths. Government policies are only partially addressing these issues. They pay greater attention to formally encouraging citizens to become more involved in policy making, largely ignore the contribution young people could make to the community cohesion agenda, and weakly define the shared norms and values that are crucial in building cohesive communities. Thus, the conclusion is that whilst an emphasis of the government on ‘community’ is to be welcome, more needs to be done in terms of considering the ‘voices’ of the community as well as enabling communities to determine and act upon their priorities
    • …
    corecore