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We investigate dynamic hysteresis in ferromagnetic thin films with zigzag domain walls. We introduce a
discrete model describing the motion of a wall in a disordered ferromagnet with in-plane magnetization, driven
by an external magnetic field, considering the effects of dipolar interactions and anisotropy. We analyze the
effects of external field frequency and temperature on the coercive field by Monte Carlo simulations, and find
a good agreement with the experimental data reported in literature for Fe/GaAs films. This implies that
dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking
domain nucleation.
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I. INTRODUCTION

Ferromagnetic materials are concrete examples of coop-
eratively interacting many-body systems. When a magnet is
driven by a varying external magnetic field, the system can-
not reach equilibrium instantaneously, due to the internal re-
laxation delay. If the external field oscillates, the magnetiza-
tion will do so as well, lagging behind the field. This effect
gives rise to a nonvanishing area of magnetization-field loop
whose form will depend on the applied field frequency: a
phenomenon known as dynamic hysteresis.1,2 Since the loop
area represents the amount of externally supplied energy that
is irreversibly transformed into heat during one magnetiza-
tion cycle, dynamic hysteresis has important technological
implications, e.g., for high frequency devices applications.
Furthermore, from a purely theoretical point of view, the
dynamics of disordered magnetic systems represents a cen-
tral problem in nonequilibrium statistical mechanics. While
in three dimensional systems dynamic hysteresis is well un-
derstood in terms of eddy currents dissipation, this effect is
expected to become negligible by reducing the sample
thickness.3 Thus recently there has been a renewed interest in
understanding two dimensional systems, both
experimentally2,4–17 and theoretically,1,18–20 motivated by the
applications of thin ferromagnetic films in magnetic record-
ing technology and spintronic devices.

Two classes of models are mostly used to investigate the
magnetization reversal properties on a microscopic scale,
spin models of the Ising type,1,22–24 or extended domain wall
models.20,21,25 The theoretical tools used to interpret experi-
mental data on dynamic hysteresis are often grown out of the
first class of models which suggest a universal scaling law
for the dependence of the hysteresis loop area A on the ex-
ternal parameters, i.e., the temperature of the system T and
the amplitude H0 and frequency � of the applied magnetic
field. In particular, it is expected from the models that A
�H0

���T−�, where �, �, and � are the scaling exponents. 1

The experimental estimates of these exponents display, how-
ever, a huge variability4–12,17 and the validity of that univer-
sal scaling law is still under debate.16,26 Since various phe-
nomena may in principle contribute to the hysteretic
behavior, such as domain nucleation, domain wall propaga-
tion, or simply retardation of the magnetization due to fluc-

tuations, it has been proposed that the lack of good scaling of
the function A��� is due to a crossover between two distinct
dynamical regimes, one dominated by domain wall propaga-
tion, and the other by nucleation of new domains.2,9

The second class of models used to investigate ferromag-
netic systems considers the dynamics of individual domain
walls as the relevant mechanism for hysteresis. In two di-
mensional systems, developing such a kind of model can be
even more complicated than in the bulk three dimensional
case, due the possibility for the magnetization to lay in or out
the film plane, and the huge variety of domains and domain
walls topologies �for an exhaustive overview of the existing
configurations together with many experimental images, see
Ref. 27�. Dynamic hysteresis due to the motion of 180°
Bloch domain walls has been extensively investigated,16,20

but less is know about charged walls.
In this article we focus on two dimensional systems with

zigzag domain walls, arising from the competition between
dipolar forces and magnetocrystalline anisotropy in thin
films with head-on magnetization between nearest-neighbor
domains.28 These walls have been originally observed in thin
film magnetic recording media, where head-on domains are
induced by means of the application of a recording head
field, and have been then reported in several magnetic mate-
rials such as iron,29 Co,30 Gd-Co,28 epitaxial Fe films grown
on GaAs�001�,9 finemets, and many others. In addition, zig-
zag walls have also been observed in ferroelectric materials,
such as Gd2�MoO4�3 crystals.31 Most calculations reported in
literature for zigzag walls focus on the derivation of the equi-
librium parameters �e.g., zigzag angle and amplitude or
period�28,32 and do not consider their dynamics.

Here we introduce a discrete model for the motion of a
single zigzag wall in a disordered ferromagnetic two dimen-
sional sample with in-plane uniaxial magnetization, driven
by an external �triangular� magnetic field. The model is
based on the interplay between dipolar and anisotropy energy
contributions, in the presence of structural disorder. Dynamic
hysteresis is investigated by Monte Carlo simulations analyz-
ing the behavior of the coercive field Hc as a function of the
external field frequency, temperature T, and sample thick-
ness. We find a reasonable agreement with experimental data
reported for Fe/GaAs thin films.9 Our results indicate that
the experiments can be interpreted by a domain wall propa-
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gation model, and thus ruling out explanations involving a
cross-over with domain nucleation or other processes.2,9

The manuscript is organized as follows. In Sec. II we
present an overview on the energetics of a zigzag domain
wall, computing magnetostatic, anisotropy, and disorder en-
ergies. In Sec. III we estimate the mean zigzag half-period
and the coercive field and compare our result with experi-
mental observations, in order to test the reliability of our
approximations. Next, in Sec. IV we present our model and
the results obtained by Monte Carlo simulations for the fre-
quency, temperature, and thickness dependence of the coer-
cive field, and compare them with experiments. Our results
are finally summarized in Sec. VI.

II. ENERGETICS OF ZIGZAG DOMAIN WALLS

In thin uniaxial ferromagnetic films, we can distinguish
between two main classes of domain walls: the first is rep-
resented by prevalently straight �magnetically uncharged�
walls parallel to the easy axis, and the second by charged
walls separating two domains with head-on magnetization.
Since there is a cost of magnetostatic energy associated with
the magnetic charge that increases with the sample thickness,
these walls are observed mostly in thin films.27 On the other
hand, a charged straight wall is unstable and becomes meta-
stable by forming a zigzag pattern to minimize its energy.

A quite extensive derivation of the equilibrium zigzag pa-
rameters �amplitude, period, and angle� has been reported in
Ref. 32. The calculation is based on a Néel tail transition
model33 which involves an in-plane magnetization rotation
over a transition region: the spins rotate following the wall
shape. Thus the entire region surrounding the wall exhibits a
nonuniform magnetization �see Fig. 1�. This spreading oc-
curs at the cost of increasing the anisotropy energy. The total
energy may be expressed as a function of the zigzag param-
eters that are then obtained by minimization. From our point
of view, it is important to stress that from magneto-optical
images it can be inferred that the zigzag angle is constant
across the wall and does not change during the motion. Thus,
in the following, we will consider the angle as a fixed pa-
rameter in our model. As we mentioned in the Introduction,
the zigzag shape of the wall is due to the interplay between
the magnetostatic and the anisotropy contributions to the to-
tal energy.28 The magnetostatic term opposes a straight wall,
which would maximize the magnetic charge density, and fa-
vors a large zigzag amplitude, so that the magnetic charges at
the wall �all of the same sign� are as separated as possible.

The anisotropy term prevents the amplitude to increase
freely, avoiding an excessive deviation of the magnetization
from the easy axis associated with a spread out Néel tail.

Our purpose is to study domain wall motion under an
external magnetic field, by discrete model simulations. To
this end, we calculate the total energy of an arbitrary zigzag
wall configuration. As we are interested in the macroscopic
response, we do not consider the details of the wall internal
structure, and treat only the magnetostatic, the anisotropy
and the disorder contributions

E = Em + Ean + Edis. �1�

In Eq. �1�, the magnetostatic term Em takes into account the
interaction between magnetization and stray field, the aniso-
tropy Ean is the energy cost of deviations from easy axis, and
Edis models structural disorder, impurities, defects, and so on.
In the following subsections we will discuss these terms in
more detail.

A. Magnetostatic energy calculation

We consider two generic segments of a zigzag wall of
total length L. We label the segments as i=1, . . . ,n, where
n=L / p and p is the half-period of the zigzag. We call h the
zigzag amplitude and � the angle between the zigzag seg-
ment, and the easy axis. The thickness of the film is �, and it
coincides with the wall thickness as we will consider only
rigid walls �see Fig. 2 for a definition of the parameters�.

Since the magnetostatic self-energy only depends on the
total magnetic charge, which is constant during the wall mo-
tion, we limit the calculation to the magnetostatic interaction
energy �i.e., i� j�. The contribution due to the ith and the jth
segments may be written as the surface integral

Eij =� �	i�x,y,z�dSj ,

where �=M · n̂=2Mssin � is the �constant� surface magnetic
charge density �Ms is the saturation magnetization�, n̂ is the
unit vector normal to wall segment surface, and Sj is the
surface of the jth segment. The scalar potential generated by
the ith segment, 	i�x ,y ,z�, is calculated by

	i�x,y,z� =� �

�r − r��
dSi�.

So, for � small with respect to the segments distance, we can
write

FIG. 1. The magnetic configuration in the Néel tail.

FIG. 2. �Color online� Sketch of the parameters of the zigzag
wall. The easy axis is along the y direction.
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Eij = 8Ms
2�2
0�

jp

�j+1�p

dx�
ip

�i+1�p

dx�

�
1

��x − x��2 + �mix + qi − mjx� − qj�2
, �2�

where mi and mj are the slopes �which values should be
±h / p= ±tan�� /2−��� and qi and qj the y intercepts of the ith
and jth segments. The direct solution of Eq. �2� is very in-
volved, and we report it in the Appendix.

B. Anisotropy energy calculation

The anisotropy energy term Ean describes the energy cost
of the deviation of magnetic moments from the easy axis of
the material, which in the simple case of an uniaxial crystal
can be written as

Ean =� d3rKusin2 	 , �3�

where Ku is the in-plane uniaxial anisotropy constant and 	
is the angle between the easy axis and the magnetization
vector. The rotation of the magnetization is associated with
the Néel tail �Fig. 1�. We assume28 that the charge is uni-
formly distributed over the entire band containing the wall.
Although this approximation exaggerates the diffuseness of
the charge, it has been used to calculate vertex angles and
zigzag amplitudes that resulted to be in reasonable agree-
ment with experimental observations.28 We can estimate Eq.
�3� �with the notation sketched in Fig. 2� and obtain

Ean =
�Ku

h tan �
�

−h/2

h/2

dy�
−�h/2−y�tan �

�h/2−y�tan �

dx sin2 	�x,y� . �4�

Assuming that 	�x ,y� describes a linear in-plane rotation
of the magnetization vector 	�x ,y�=�x / ��h /2−y�tan ��, de-
veloping sin2 	 in power series, and then integrating term by
term, we obtain the anisotropy energy for unit length as

Ean = �Kuhc��� , �5�

where c��� is a constant function of the zigzag angle �:

c��� = �
m,l=0


�− 1�m,l

�2m + 1� ! �2l + 1�!
�2�m+l+1�

2�m + l + 1� + 1
,

which could be evaluated numerically.

C. Disorder

Different sources of inhomogeneities are found in virtu-
ally all ferromagnetic materials, and the presence of struc-
tural disorder is essential to understand the hysteretic behav-
ior, especially to account for the residual coercive field at
�→0. Disorder is provided by vacancies, nonmagnetic im-
purities, dislocations, or grain boundaries in crystalline sys-
tems, variations of the easy axis between different grains for
polycrystalline materials and internal stresses for amorphous
alloys. We will consider only quenched �frozen� disorder,
that does not evolve on the timescale of the magnetization

reversal. For simplicity we model disorder by an energy con-
tribution associated to each site which may be occupied by a
segment �our discrete unit length� of the zigzag wall. This
term is extracted from an uncorrelated random Gaussian dis-
tribution with zero mean.

The dependence of the disorder energy on the film thick-
ness can be obtained by simple considerations. Given that
the minimal segment has length a, we discretize the sample
thickness in � /a elements and associate a Gaussian random
variable to each of them. The mean square value of the dis-
order energy per unit domain wall length is then proportional
to the sum of contributions over the whole thickness, and
thus to �. As a consequence of this, the disorder contributes
to the total energy �Eq. �1�� by a term proportional to the
square root of the film thickness

Edis = ��� , �6�

where � is the variance of the random variables.

III. THEORETICAL CONSIDERATIONS AND
COMPARISON WITH MATERIALS

A. Zigzag parameters

A way to test the reliability of our model is to compare the
results of our model for some relevant parameters with the
measured experimental values. As an example, we can esti-
mate the typical zigzag half-period peq for an equilibrium
configuration in absence of external field. An approximation
of the magnetostatic energy can be obtained in closed form
by developing Eq. �2� for p�L and is given, for unit length,
by

Em 	 8
0Ms
2�2ln�L/p� .

In the absence of disorder and for Hext=0, the total energy
�Eq. �1�� can be written as

E = Em + Ean 	 8Ms
2�2
0ln�L/p� + �Ku

p

tan �
c��� ,

where we have imposed h= p / tan �. If the configuration is
stable, considering the T=0 case, we can impose �E /�p=0
and obtain

−
8Ms

2�2
o

p
+

�Kuc���
tan �

= 0,

from which follows

peq =
8Ms

2�
0tan �

Kuc���
. �7�

We can estimate the numerical value of peq by using the
parameters reported in literature for typical ferromagnetic
thin films. For example, for Fe/GaAs�001� analyzed in Ref.
9 we can set 
0Ms=2T and Ku=0.5�105 J /m3, so that for a
thickness �=25 nm and an angle �=20°, we obtain

peq 	 100 
m,

which is in good agreement with the typical lengthscale in-
ferred from magneto-optical investigations.9
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B. Coercive field and thickness dependence

Another quantity that is interesting to obtain quantita-
tively is the value of the �zero frequency� coercive field. A
very rough order of magnitude estimate could be obtained
supposing that the disorder is small and that the anisotropy
and magnetostatic terms are of the same order of magnitude.
Close to the coercive field when the energy variation is sta-
tionary we can set


0Ms�phHc = �phKuc��� ,

which implies

Hc =
Kuc���

0Ms

. �8�

Employing the parameter values reported above, we obtain
Hc
15 Oe, which is in reasonable agreement with the range
of values found for Fe/GaAs thin films.9

A more refined quantitative calculation of Hc is difficult
because we can not easily quantify the value of the disorder
term. Nevertheless, we can obtain from simple consider-
ations the thickness dependence of coercive field. The energy
difference between two zigzag wall configurations in the
presence of external magnetic field Hext is given by �see Eq.
�1��:

�E = �Em + �Ean + �Edis + �Eext, �9�

where the interaction �Eext with Hext is given by

�Eext = − 2
0Ms�Hext�A , �10�

and �A is the area interested by the magnetization reversal.
As it could be seen from Eqs. �2�, �5�, and �6�, Eq. �9� could
be rewritten as

�E = �2�Em� + ��Ean� + ���Edis� + ��Eext� , �11�

where �Em� =�Em/�2, �Ean� =�Ean/�, �Edis� =�Edis /��, and
�Eext� =�Eext /� do not dependent on �. As �E represents the
energy barrier that the zigzag wall has to overcome in order
to move in the direction of the external magnetic field, we
expect that Eq. �11� encodes crucial informations on the dy-
namics.

The coercive field dependence on the thickness, can be
obtained comparing �Eext with the most relevant of the vari-
ous terms contributing to �E. For �→0, �E is dominated by
the disorder contribution. Comparing �Eext�� with �Edis
���, we easily obtain Hc�1/��. If the wall is strongly
pinned by disorder or anisotropy, starting from a saturated
configuration, small external field changes are not able to
trigger avalanches, resulting in square-shaped hysteresis
loops with high coercitivity. Otherwise, if the pinning is
weak, avalanches are induced even by relatively small field
changes, so that the loops will be tighter, with small coercit-
ivity. We can expect that the 1/�� dependence will disappear
in the limit of weak disorder regime. For intermediate � val-
ues, the leading terms in Eq. �11� will be the anisotropy
energy �Ean�� and the interaction with the external mag-
netic field �Eext, leading to a thickness independent coercive
field given by Eq. �8�. Finally, for larger values of �, the
dipolar energy will lead the energy barrier balance, inducing

a linear dependence thickness dependence of the coercive
field �Hc���. As it is shown in the following sections, these
general considerations are confirmed by numerical simula-
tions.

IV. MONTE CARLO SIMULATIONS

A. The model

To investigate dynamic hysteresis, we perform Monte
Carlo simulations based on the energy terms derived above.
We consider a wall of length L in a sample of finite dimen-
sions. Since we are interested in macroscopic effects, we
discretize the wall defining a minimal segment length a and
map the zigzag wall into a particle model. We define the
minimal elements with negative slope as a particle and those
with positive slope as a void, as sketched in Fig. 3. Thus we
reduce the two-dimensional problem of a zigzag wall into a
one-dimensional particle model evolving under the appropri-
ate dynamic rules.

The Monte Carlo dynamics is implemented by choosing
randomly an active pair of nearest neighbor elements, i.e., a
particle-void or a void-particle pair, and trying to exchange
their positions between each other. This rule corresponds to
allow only the motion of segments with down-up or up-down
slope, preserving the zigzag �solid-on-solid� structure of the
wall. Once a possible displacement has been attempted, we
calculate the energy difference �see Eq. �9�� between the
starting configuration and the new one. If �E�0 we accept
directly the move, otherwise the move is accepted with prob-
ability P=exp�−�E /kBT�. In practice, the various contribu-
tions to �E are evaluated as follows.

�Em is obtained from Eq. �2�. To simplify the expression,
we can use Eij =1/rij if the particles are not nearest neighbor,
and the whole expression in Eq. �A1� otherwise. As it is
discussed in the Appendix Eij deviates significantly from
1/rij only if i and j are nearest neighbor. We can then per-
form another simplification, by absorbing the deviation from
1/rij into the anisotropy �nearest-neighbor� term. In sum-
mary we can set Eij equal to 8
0Ms

2�2 /rij ∀i , j, and renor-
malize the anisotropy term by an appropriate magnetostatic
constant. Notice that �Em is an attractive long range term,
tending to aggregate all the particles. This configuration
would correspond to a single period of a zigzag with p
=L /2.

�Ean is a nearest-neighbor repulsive term that favors con-
figurations where particles are followed by voids. This pre-
vents the formation of a zigzag with a wide amplitude. In
practice this term is treated as a positive contribution if the
left �right� nearest neighbor of the segment i �i+1� to be
flipped has opposite slope with respect to i �i+1�, and a
vanishing contribution otherwise. In this way we treat the

FIG. 3. The mapping. Two examples of zigzag configuration.
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rotation of the magnetic moments close to the zigzag wall, as
uniformly distributed in a “band” surrounding the wall.28

�Edis represents the contribution from structural disorder,
whose time-independent intensity is randomly extracted with
Gaussian distribution with zero mean for every site.

�Eext, the interaction with the external magnetic field
Hext, is calculated from Eq. �10�, i.e., �Eext=−2
0Hext�M,
where �M is the magnetization difference between the two
configurations.

If the move is accepted we update the configuration and
continue the process for a time interval �t. In the spirit of the
Monte Carlo method, each attempt corresponds to a time
step �=1/Nact, where Nact is the number of active particles
�i.e., those that are followed or preceded by a void�. After
each time interval �t is expired we increase the external field
by �Hext and restart the updating process. This rule corre-

sponds to a field rate Ḣ��Hext /�t��. We begin the simu-
lation from the M =0 at Hext=0 state and drive the sample to
positive and then to negative saturation.

The results are presented in dimensionless units: distances
are expressed in units of L, magnetization in units of
2ph�Ms, and fields in units 
0. Finally time is measured in
Monte Carlo steps.

B. Results

1. Rate dependence

The first issue to be addressed in dynamic hysteresis is
clearly the effect of the external field rate on the hysteresis.
In Fig. 4, we show hysteresis loops obtained at T=0 for
various rates. As expected from experiments and general
considerations, small �high� rates correspond to narrow
�large� cycles. To quantify this observation we can focus on
the coercive field behavior. In Fig. 5 we show the depen-

dence of Hc on the field rate dH /dt= Ḣ.
At T=0 �for a discussion of the behavior at non vanishing

temperatures, see the following subsection�, for the consid-
ered field time rates, Hc shows an increasing linear depen-

dence on Ḣ, of the form Hc=Hp+AḢ, where A is a constant.

This means that in the adiabatic limit �low rates� Hc goes to
a nonvanishing value Hp �as clearly shown in the semiloga-
rithmic plot of Fig. 5�b��, that we can interpret as the pinning
dominated quasistatic component due to structural disorder
and anisotropy, while the linear behavior of Hc in the high
rates regime represents the domain wall dominated dynamic
contribution.

This result is a particular case ��=1� of the law

Hc = Hp + AḢ�, �12�

used to fit simulations and experiments in Refs. 18, 19, and
26 �but with a different exponent �� and suggested by the
theory presented in Ref. 20. In the model of Ref. 20, the
exponent � is related to the scaling exponent � associated
with the depinning transition of the domain wall. In particu-
lar, it is assumed that under a constant applied field the do-
main wall velocity v�dM /dt follows:

v = C�H − Hp��, �13�

for H slightly larger than Hp, while v vanishes for H�Hp.
Using Eq. �13� as a constitutive law, one can readily show
that the dynamic coercive field scales as in Eq. �12� with �
=1/ ��+1�. The limit �=1 corresponds to �→0 or else to a
gap in the domain wall velocity as a function of the external
magnetic field. A very sharp dependence of the velocity on

FIG. 4. �Color online� Some T=0 hysteresis cycles for different
external field time rate.

FIG. 5. �Color online� Coercive field vs external field rate at
various temperatures, in a linear �a� and semilog plot �b�. Every
value is mediated over 1000 realizations corresponding to different
disorder configurations. The solid lines on the T=0 curves are a
linear fit.
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the field is indeed observed in our model �see Fig. 6� around
the coercive field, where the segments of the zigzag wall
begin to move. This is probably a strong pinning effect: due
to the zigzag structure of the wall the system is trapped by
strong anisotropy barriers and collective effects, typically
leading to a continuous depinning, are suppressed.

2. Temperature dependence

Another interesting issue to analyze is the effect of tem-
perature T on dynamic hysteresis. Even if thermal effects do
not seem to be relevant for most ferromagnetic thin films
where kBT��E, as it can be checked, e.g., comparing kBT
	10−21 J at room temperature, where the experiments are
typically performed, with an estimate of �E	Ean	10−12 J
which is obtained with the parameters of Fe/GaAs�001�
given in Sec. III. Thermal activation could, however, play a
role at very low frequencies or in ultrathin ferromagnetic
films. In general terms, the increase of the temperature �at
reasonably low rate, see Fig. 8� acts on the hysteresis cycles
shape in an similar way as the decrease of the rate �see Fig.
7�. Since a temperature increase enhances the probability for
the wall to overcome energy barriers, at high �low� tempera-

ture hysteresis loops will be large �narrow�. However at very
high frequencies, the system is not able to readily respond to
the external field, and the decreasing dependence of Hc on
increasing temperatures is violated, as shown in Fig. 8. This
explains the crossover between the curves with T=0.4 and
T=0.8 �Fig. 5�.

In Fig. 5 we show the dependence of Hc vs Ḣ at various
nonzero temperatures. It is interesting to note that our simu-

lations predict that the high T behavior of Hc vs Ḣ deviates
from the linear behavior established at T=0. This can be
understood from general considerations, since when T�0
thermal activation will lead creep domain wall motion even
for H�Hp. Hence, according to the theoretical analysis pre-
sented in Ref. 21 at low frequencies the dynamic coercive
field will deviate from Eq. �12� and decay as Hc


1/ �ln�Ḣ��1/
 where 
 is a creep exponent. This result is
consistent with Fig. 5�b�, although the limited scaling range
does not allow for a quantitative confirmation.

It is worth noting that due to numerical simulations we
cannot push the simulations to very low rates to test whether
similar deviations are observed at T=0. On the other hand,
we do observe deviations from the linear behavior as soon as
thermal activation is introduced in the model.

3. Thickness dependence

Finally, we address the role of the film thickness in dy-
namic hysteresis. As it can be seen in Eq. �11�, for suffi-
ciently large � above the purely disorder dominated regime
discussed in Sec. III B, the energy barrier increases linearly
with � at T=0, and the coercive field does so as well.

Turning to a more quantitatively discussion, at T=0 the
results of Eq. �11� are confirmed by the simulations for vari-
ous � summarized in Fig. 9. In the two upper curves, where
the disorder energy term is not negligible, we notice three
regimes: a divergence proportional to 1/�� at very low �,
due to the disorder term and linear regime for high � values,
due to the dipolar term �the regime independent from � that
would be due to the anisotropy energy and the external field,
cannot be seen clearly in that figure�. Moreover, from the
lower curve of Fig. 9 �the one without disorder� we confirm
that the low-� divergence is due to the disorder term. Other-

FIG. 6. �Color online� Velocity of the domain wall, normalized
to the number of unit segments of the zigzag, as a function of an
external constant field. Each point is an average over 2000 different
disorder configurations.

FIG. 7. �Color online� Some hysteresis cycles for various tem-
perature. The external fixed field time rate is �t=100.

FIG. 8. �Color online� Coercive field vs temperature for various
external field time rates. Every value is mediated over 1000 realiza-
tions corresponding to different disorder configurations.
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wise, the thickness dependence of the coercive field does not
affect the linearity of the rate dependence of Hc, which re-
mains valid for every � value, as is seen in Fig. 10 �at T=0�.

V. COMPARISON WITH EXPERIMENTS

It is interesting to compare the predictions of our models
with experiments. An extensive recording of dynamic hyster-
esis in a material with a single zigzag domain wall was re-
ported in Ref. 9 for two different thickness values. Here, for
the sake of comparison, we report this data in Fig. 11 both in
linear and in semilogarithmic scales. The logarithmic scale
can be misleading because an additive constant, such as Hp
in Eq. �12� leads to a flattening of the curve and may suggest
that a crossover is taking place. This has been interpreted in
Ref. 9 as due to the interplay between nucleation and domain
wall propagation. We have tried to fit the experimental data
with Eq. �12� but the result is not entirely satisfactory. A
direct fit over the entire range yields �=1 for the 25 nm
sample and �=0.76 for the 5 nm one. However, if we restrict
the fit to the low rates region, the exponent appears to be

smaller, and closer to �=0.5. In summary, a linear regime
could only be identified in the high rate region, with nonlin-
earities that are more marked for small rates and thicknesses.

If we compare the experimental results with our model,
we notice that the value of Hc for the thinner sample ��
=55 Å� is smaller than the value measured for the thicker

one ��=250 Å� at the same field rate Ḣ, and this behavior is
correctly captured by our model �see Fig. 10�. As for the rate
dependence, we can not reach a satisfactory quantitative
agreement, but we propose to interpret the nonlinearities at
low rates by means of thermal activation �compare with Fig.
5�. This interpretation is supported by the fact that nonlin-
earities are stronger for the thinner sample, as it would be
expected if thermal effects where the cause. In Fig. 10 we
show simulated results at T=0. In fact, as previously dis-
cussed �see Sec. IV B 2�, temperature effects are expected to
be small in ferromagnets, and thus the coercive field, for
sufficiently high rates, for small �but nonzero� T should be
similar to the one obtained at T=0.

FIG. 12. �Color online� Interaction magnetostatic energy be-
tween two generic segments with parallel or opposite slopes as a
function of the distance between their centers of mass.

FIG. 9. �Color online� Coercive field vs film thickness for vari-
ous values of the � of the disorder Gaussian distribution. Every
value is mediated over 200 realizations corresponding to different
disorder configurations.

FIG. 10. �Color online� Coercive field vs rate Ḣ at T=0 for two
different thicknesses in semilogarithmic scale. In the inset: a linear
plot of the same data. The linear behavior is not affected by the
thickness. Compare the present figure with the experimental results
reported in Fig. 11.

FIG. 11. �Color online� Coercive field as a function of the ex-
ternal field rate from experiments on Fe/GaAs thin films for two
different thicknesses in semilogarithmic scale. In the inset: a linear
plot of the same data. The deviation from linear behavior could be
due to thermal activation as in our model. Data are obtained from
Ref. 9.
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We notice as well that the data reported in Ref. 13 for
even thinner films of Fe/GaAs show a logarithmic decrease
of Hc at low rate, not observed for thicker samples where Hc
tends instead to a constant as in Fig. 11.

VI. CONCLUSIONS

The dynamics of two dimensional ferromagnetic systems
is still under debate, both on the theoretical and the experi-
mental side. A crucial issue is the description of the dynamic
hysteresis, that is related to power losses and thus plays an
important role in several technological applications. Here,
we have analyzed ferromagnetic thin films with zigzag do-
main walls, arising when the magnetization vectors in two
nearest-neighbor domains meet head-on at the wall that sepa-
rates them. To investigate dynamic hysteresis, we have stud-
ied the motion of zigzag domain walls by developing a
simple discrete model based on the interplay between dipolar
and anisotropy energy contributions, in presence of structural
disorder. Under some simple approximations one can esti-
mate some experimentally relevant quantities, such as the
typical zigzag half-period and the coercive field, which turn
out to be in quantitative agreement with experimental obser-
vations.

Although quite simplified, our model allows to recover
the behavior of coercive field Hc in dynamic hysteresis. We
have studied the dependence of Hc on the applied magnetic

field rate Ḣ at T=0 and found that the coercive field scales as

Hc=Hp+AḢ. This linear behavior is in qualitative agreement
with experiments,9 which we can thus explain by means of
pure domain wall propagation model, without the need to
invoke other dynamic processes as domain nucleation. We

have also simulated hysteresis at T�0 and show that high
temperature at low rate induces narrow loops and the coer-
cive field decreases with respect to the T=0 case, while at
high rate the situation is less intuitive due to the delay be-
tween the system response and the external driving field. We
have also studied the dependence of the coercitivity from the
film thickness �. The behavior indicated by the simulations is
explained by simple analytical considerations. For small dis-
order, we find that the thickness does not affect the rate de-
pendence of Hc at T=0. It is interesting to remark that our
model could be applicable to ferroelectric materials which
are known to show as well zigzag domain walls. It would be
very interesting to compare our results with experiments in
this case as well.
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APPENDIX

Analytical calculation of magnetostatic energy: the result
of Eq. �2� is given by

Eij = 8Ms
2�2���mi,mj��g1�mi,qi − qj,mj, jp,ip�

− g1�mi,qi − qj,mj, jp,�i + 1�p� − g1�mi,qi − qj,mj,�j

+ 1�p,ip� + g1�mi,qi − qj,mj,�j + 1�p,�i + 1�p�� + ��mi,

− mj��g2�mi,qi − qj,mj, jp,ip� − g2�mi,qi − qj,mj, jp,�i

+ 1�p� − g2�mi,qi − qj,mj,�j + 1�p,ip� + g2�mi,qi

− qj,mj,�j + 1�p,�i + 1�p�� , �A1�

where

g1�m,q − q�,m,x,x�� =
1

1 + m2��r − r�� −
a�r − r��

2
ln� �r − r�� − a�r − r��

�r − r�� + a�r − r���� ∀ q � q�,

g1�m,q − q�,m,x,x�� =
�− x + �x − x��ln�x − x���

�1 + m2
if q = q�

g2�m,q − q�,m,x,x�� = b�r − r��ln� �r − r�� + a�r − r��
�r − r�� − a�r − r��� + b�r� − r�ln� �r − r�� + c�r − r��

�r − r�� − c�r − r���
and

a�r − r�� =

x� − x + m2�x� −
m�

m
x� − m��q − q��

�1 + m2
,

b�r − r�� =
q − q� + 2mx

4m�1 + m2
,

c�r − r�� =
x − x� + m2�x + x�� + m�q − q��

1 + m2 ,
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and ��m ,m�� is Kronecker’s delta.
In Fig. 12 we plot the function Eij �for unitary 8Ms

2�2� as
a function of the distance between the centers of mass of the
segments i and j. As could be seen, the value of magneto-

static interaction energy is mainly proportional to 1/ �r−r� �
=1/rij for each pair of i and j but the nearest neighbor, where
magnetic charges are sufficiently close to each other to ex-
perience the very shape of their spatial distribution.
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