118 research outputs found

    Large scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress and inherited lithospheric structure in the late stage of the SE Carpathians evolution.

    Get PDF
    The interplay between slab dynamics and intraplate stresses in postcollisional times creates large near-surface deformation, particularly in highly bent orogens with significant lateral variations in mechanical properties. This deformation is expressed through abnormal foredeep geometries and contrasting patterns of vertical movements. Intraplate folding is often the controlling mechanism, particularly when the orogenic belt is locked. The study of these tectonic processes in the SE Carpathians indicates a generalized subsidence period during latest Miocene-Pliocene times driven by the slab-pull and an intraplate folding due to an overall Quaternary inversion. The latter accommodates -5 km ESE-ward movement of this area with respect to the neighboring units, which creates complicated three-dimensional deformation patterns potentially driven at a larger scale by the interaction between the Adriatic indentor and the entire Carpathians system. The lithospheric anisotropy inherited from the subduction times concentrates strain and induces large-scale deformation far away from the active plate margins. This anisotropy is dynamic because of deep mantle processes related to the subducted slab during postcollisional times, such as thermal reequilibration or increase in slab dip. Copyright 2007 by the American Geophysical Union

    Gravitomagnetic Effects in the Propagation of Electromagnetic Waves in Variable Gravitational Fields of Arbitrary-Moving and Spinning Bodies

    Get PDF
    Propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary velocities is discussed. The gravitational field is assumed to be "weak" everywhere. Equations of motion of a light ray are solved in the first post-Minkowskian approximation that is linear with respect to the universal gravitational constant GG. We do not restrict ourselves with the approximation of gravitational lens so that the solution of light geodesics is applicable for arbitrary locations of source of light and observer. This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the rotation of pulsar and its companion. We also derive the correction to the light deflection angle caused by rotation of gravitating bodies in the solar system (Sun, planets) or a gravitational lens. The gravitational shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of polarization of electromagnetic waves (Skrotskii effect). This formula is valid for arbitrary translational and rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space astrometry and developing corresponding algorithms for data processing in space astrometric missions such as FAME, SIM, and GAIA.Comment: 36 pages, 1 figure, submitted to Phys. Rev.
    • …
    corecore