66 research outputs found

    Early rapidly developing constrictive pericarditis after aortic valve surgery

    Get PDF

    Constrictive pericarditis is an easily overlooked cause of right heart failure: a case report

    Get PDF
    We describe a patient who suffered progressive right heart failure of unknown aetiology, despite a lengthy series of hospital investigations. Constrictive pericarditis had not been suspected during life, and was ultimately diagnosed as an autopsy finding. The salient clinical features and confirmatory investigations for this unusual disorder are reviewed. The case reminds us to consider the possibility of constrictive pericarditis in patients with unexplained chronic right heart failure, so that prompt investigation and treatment can be instigated

    Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future.

    Get PDF
    The interest in RDN for hypertension has fluctuated recently, with a flurry of initial enthusiasm followed by sudden loss of interest by researchers and device manufacturers, with an almost as sudden resurgence in clinical trials activity and device innovation more recently. There is widespread consensus that this therapeutic strategy can be effective, at least for some of the technologies available. Major uncertainties remain as to the clinical role of RDN, and whether any of the emerging technologies such as AV-anastomosis formation, carotid body ablation, carotid bulb expansion, or baroreflex stimulation will have a future as effective treatment options in patients with hypertension. In our first consensus report in 2015, the European Expert Group pointed to the major unmet need of standardization of measurements, trial design and procedural performance.6 With the large number of different technologies currently in the pipeline, this need has even increased. Only through high-quality, collaborative research and openness to new methods for recruitment, patient selection, and assessment of outcomes will it be possible to establish incontrovertibly whether device therapies for hypertension are effective and what are preferred patient populations. Once the proof of concept is established, further studies with a design relevant to clinical reality will be needed to establish the place of new devices in the treatment armoury. The clinical and research community has a large responsibility to prove or disprove the value of new therapies, in order to ensure that antihypertensive devices provide future patients with the greatest benefit and the smallest risk. copy; The Author 2017

    Additional disruption of the ClC-2 Cl(-) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models

    No full text
    Cystic fibrosis is a fatal inherited disease that is caused by mutations in the gene encoding a cAMP-activated chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). It has been suggested that the cystic fibrosis phenotype might be modulated by the presence of other Cl(-) channels that are coexpressed with CFTR in some epithelial cells. Because the broadly expressed plasma membrane Cl(-) channel, ClC-2, is present in the tissues whose function is compromised in cystic fibrosis, we generated mice with a disruption of both Cl(-) channel genes. No morphological changes in their intestine, lung, or pancreas, tissues affected by cystic fibrosis, were observed in these mice. The mortality was not increased over that observed with a complete lack of functional CFTR. Surprisingly, mice expressing mutant CFTR (deletion of phenylalanine 508), survived longer when ClC-2 was disrupted additionally. Currents across colonic epithelia were investigated in Ussing chamber experiments. The disruption of ClC-2, in addition to CFTR, did not decrease Cl(-) secretion. Colon expressing wild-type CFTR even secreted more Cl(-) when ClC-2 was disrupted, although CFTR transcript levels were unchanged. It is concluded that ClC-2 is unlikely to be a candidate rescue channel in cystic fibrosis. Our data are consistent with a model in which ClC-2 is located in the basolateral membrane

    Critical role of the mineralocorticoid receptor in aldosterone-dependent and aldosterone-independent regulation of ENaC in the distal nephron.

    No full text
    The epithelial Na <sup>+</sup> channel (ENaC) constitutes the rate-limiting step for Na <sup>+</sup> absorption in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). Previously, we demonstrated that ENaC activity in the DCT2/CNT transition zone is constitutively high and independent of aldosterone, in contrast to its aldosterone dependence in the late CNT/initial cortical CD (CCD). The mineralocorticoid receptor (MR) is expressed in the entire ASDN. Its activation by glucocorticoids is prevented through 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) abundantly expressed in the late but probably not early part of the ASDN. We hypothesized that ENaC function in the early part of the ASDN is aldosterone independent but may depend on MR activated by glucocorticoids due to low 11β-HSD2 abundance. To test this hypothesis, we used doxycycline-inducible nephron-specific MR-deficient [MR knockout (KO)] mice. Whole cell ENaC currents were investigated in isolated nephron fragments from the DCT2/CNT or CNT/CCD transition zones using the patch-clamp technique. ENaC activity was detectable in the CNT/CCD of control mice but absent or barely detectable in the majority of CNT/CCD preparations from MR KO mice. Importantly, ENaC currents in the DCT2/CNT were greatly reduced in MR KO mice compared with ENaC currents in the DCT2/CNT of control mice. Immunofluorescence for 11β-HSD2 was abundant in the CCD, less prominent in the CNT, and very low in the DCT2. We conclude that MR is critically important for maintaining aldosterone-independent ENaC activity in the DCT2/CNT. Aldosterone-independent MR activation is probably mediated by glucocorticoids due to low expression of 11β-HSD2.NEW & NOTEWORTHY Using a mouse model with inducible nephron-specific mineralocorticoid receptor (MR) deficiency, we demonstrated that MR is not only critical for maintaining aldosterone-dependent ENaC activity in CNT/CCD but also for aldosterone-independent ENaC activity in DCT2/CNT. Furthermore, we demonstrated that cells of this latter nephron segment express little 11β-HSD2, which probably allows glucocorticoids to stimulate MR, resulting in aldosterone-independent ENaC activity in DCT2/CNT. This site-specific ENaC regulation has physiologically relevant implications for renal sodium and potassium homeostasis
    corecore