29 research outputs found

    Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates

    Full text link
    The superconducting state of underdoped cuprates is often described in terms of a single energy-scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the underdoped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the underdoped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the superconducting gap and antinodal regions. While antinodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations.Comment: 16 pages, 5 figure

    Phonon dispersion in 1-layer cuprate HgBa2CuO4+d

    Get PDF
    We investigate the low energy acoustical and optical modes in HgBa2CuO4+δ\mathrm{HgBa_2CuO_{4+\delta}} using inelastic x-ray scattering (IXS). The experimental phonon dispersion and the dynamical structure factor are compared with an atomic shell model, and the set of the atomic potentials obtained are discussed. Our results are also compared with those obtained by Raman spectroscopy and with density-of-state data measured by inelastic neutron scattering

    “Be an ambassador for change that you would like to see”: a call to action to all stakeholders for co-creation in healthcare and medical research to improve quality of life of people with a neuromuscular disease

    Get PDF
    BACKGROUND: Patient and public involvement for co-creation is increasingly recognized as a valuable strategy to develop healthcare research targeting patients’ real needs. However, its practical implementation is not as advanced and unanimously accepted as it could be, due to cultural differences and complexities of managing healthcare programs and clinical studies, especially in the rare disease field. MAIN BODY: The European Neuromuscular Centre, a European foundation of patient organizations, involved its key stakeholders in a special workshop to investigate the position of the neuromuscular patient community with respect to healthcare and medical research to identify and address gaps and bottlenecks. The workshop took place in Milan (Italy) on January 19–20, 2018, involving 45 participants who were mainly representatives of the patient community, but also included experts from clinical centers, industry and regulatory bodies. In order to provide practical examples and constructive suggestions, specific topics were identified upfront. The first set of issues concerned the quality of life at specific phases of a patient’s life, such as at the time of diagnosis or during pediatric to adult transition, and patient involvement in medical research on activities in daily living including patient reported outcome measures. The second set of issues concerned the involvement of patients in the management of clinical research tools, such as registries and biobanks, and their participation in study design or marketing authorization processes. Introductory presentations were followed by parallel working group sessions, to gain constructive contributions from all participants. The concept of shared decision making was used to ensure, in discussions, a partnership-based identification of the wishes and needs of all stakeholders involved, and the “ladder of participation” tool served as a model to evaluate the actual and the desired level of patients’ involvement in all topics addressed. A general consensus on the outcome of the meeting was collected during the final plenary session. This paper reports the outcome of the workshop and the specific suggestions derived from the analysis of the first set of topics, related to quality of life. The outcomes of the second set of topics are reported elsewhere and are only briefly summarized herein for the sake of completeness. CONCLUSIONS: The neuromuscular community proved to be very active and engaged at different levels in the healthcare initiatives of interest. The workshop participants critically discussed several topics, providing practical examples where different stakeholders could play a role in making a change and bridging gaps. Overall, they indicated the need for education of all stakeholders for better communication, where everyone should become an ambassador to promote real change. Support should also come from institutions and healthcare bodies both at structural and economic level

    DERRICK CRANE ROBUSTNESS SCENARIOS

    Get PDF
    The paper deals with derrick cranes (derricks) that are equipment typically used in the mining industry and focuses on the analysis of few robustness scenarios. Derricks are composed of built-up steel members which are widely and efficiently used in hoisting applications due to their high payloads at relevant outreaches. During the in-service use, local damages might occur and as such, the aim of the paper is to study how such damages influence the overall structural performance. In particular, reference was made to a derrick for which six geometrical configurations and five different damage scenarios have been analysed. Owing it to the extensive use of angles in the built-up compo-nent of each derrick, structural analyses have been carried out by using a commercial refined finite element analysis package (FEAP) offering the warping torsion as an additional degree of freedom for each beam node. Research out-comes allow for a clear identification of the parts of a derrick that should be protected and well-designed to guarantee a robust structure for its entire in-service lif
    corecore