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Abstract. We investigate the low energy acoustical and optical modes in

HgBa2CuO4+δ using inelastic x-ray scattering (IXS). The experimental phonon

dispersion and the dynamical structure factor are compared with an atomic shell

model, and the set of the atomic potentials obtained are discussed. Our results are

also compared with those obtained by Raman spectroscopy and with density-of-state

data measured by inelastic neutron scattering.
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Figure 1. Crystal structure of HgBa2CuO4+δ. O(1) in-plane oxygen, O(2) out-of-

plane oxygen, a = b = 3.874(1) Å, c = 9.504(9) Å, zO(2) = 0.2092(6) r.l.u., zBa =

0.2.991(1) r.l.u. (Bertinotti et al 1996).

1. Introduction

The cuprate family of HgBa2Can−1CunO2n+2+δ (or Hg-12(n-1)n) has the highest known

superconducting transition temperature at ambient pressure, with a Tc of 136K for

the 3-layer compound HgBa2Ca2Cu3O8+δ (Hg-1223) (Putilin et al 1993, Schilling et al

1993). Moreover, its superconducting gap shows a peculiar symmetry, different from

the dx2
−y2 symmetry found in the majority of the other cuprates, as Sacuto et al (1997)

clearly proved for HgBa2CaCu2O6+δ (Hg-1212). Within this family, HgBa2CuO4+δ (Hg-

1201) is perhaps even more intriguing, being the 1-layer hole doped cuprate with the

highest superconducting transition temperature Tc = 97 K, more than twice the one

of the other 1-layer cuprates (25 K - 40 K). At the same time it presents one of the

simplest crystal structures, a tetragonal primitive P/4mmm (see figure 1) symmetry,

with very little impurities, no distortions and almost perfect square Cu-O2 planes

(Bertinotti et al 1997). For these reasons, Hg-1201 is considered as a prototype among

the superconductor cuprates and relevant informations on the origin and on the detailed

microscopic mechanism of the superconductivity are expected from the study of the

collective excitations dynamics (electronic, crystalline, e.g. phonons, and magnetic‖) of

this system. However, such kind of study is experimentally not trivial since the synthesis

‖ For a full discussion of the superconductivity in cuprates and the role of the different collective

excitations in these systems we refer the reader to the review by Orenstein and Millis (2000), Hussey

(2002) and Moriya and Ueda (2003), while, for a discussion of the role of phonons in cuprates, to

Pintschovius and Reichardt (1998) as well as the recent works of Anderson (2002), Bohnen et al (2002),

Chung et al (2003) and Bishop et al (2003) and the references therein.
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of superconducting Hg-1201 single crystals is possible only for volumes smaller then 0.1

mm3 (see Bertinotti et al 1997). Such a size is insufficient for inelastic neutron scattering

(INS), that is the standard technique used to measure the dispersion of phonons. For

this reason, phonon data on this system were, up to now, limited to the ones obtained

by INS performed on powders, which gives a measure of the Phonon Density Of State

(PDOS) (Renker et al 1996) and by Raman spectroscopy (Hur et al 1993, Krantz et al

1994, Lee et al 1994, Ren et al 1994, Yang et al 1995, Zhou et al 1996a, 1996b, Poulakis

et al 1999 and Cai et al 2001). These experimental results have been analysed using a

shell model calculation by Renker et al (1996) and Stachiotti et al (1995), who have also

determined the zone centre frequencies from frozen-phonon first principle calculations.

Nowadays, the study of the phonon dispersion in sub-millimeter size cuprate crys-

tals, is possible by means of inelastic x-ray scattering (IXS), as it has been shown by

d’Astuto et al (2002, 2003), and, very recently, by Fukuda et al (2003). Nevertheless,

the measurements of phonons by IXS still represent a difficult task, since the relevant

scattering cross section, ∝ f(Q)2 ∝ Z2, is due to the oxygen motion, while the relevant

penetration depth, ∝ 1
Z4 , is dominated by the high Z ions (neodymium in d’Astuto et

al (2002, 2003) or mercury and barium in the present work), a fact that strongly re-

duces the scattering volume. Moreover, the tails of the elastic as well as the low energy

phonon lines, to which all the atoms contribute, rise the background under the weaker

high energy phonons. For further detail see d’Astuto et al (2003). Nevertheless, despite

these experimental difficulties, Hg-1201 still remains, thanks to its simple structure,

one of the most suitable systems for the understanding of the phonon dispersion and

consequently of the effects of the electron-phonon coupling.

In this first investigation, we focus the analysis on the Hg-1201 low energy acoustical

and optical modes, both in longitudinal and transverse polarisation. A particular

attention is dedicated to the calculation of the dispersion of the transverse acoustic ones,

in order to establish an accurate theoretical model able to predict the energy position

and the intensity of the phonons along the dispersion curve. A careful estimation of the

dynamical structure factor is, indeed, fundamental to select the optimal Brillouin zone

which maximise the intensity of the high energy modes that scatter weakly the X-rays,

as well as to assign the correct character to the observed branches.

2. Experiment

2.1. Samples

The single crystals of Hg-1201 were successfully grown by the flux method. The

procedure for crystal growth will be described elsewhere (Colson et al to be published).

The sample size is about 1×1×0.1mm, with the shorter size along the c axis. The sample

is as-grown, with no annealing process, in order to have the best crystalline quality:

typical mosaic spread around the a-direction is of about 0.03◦. As the sample is as-
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Figure 2. Magnetisation as a function of temperature for the sample used in the

present experiment.

grown, the superconducting transition is not sharp, but spread out over a temperature

range of ∆T ≃ 5 K (90%Tc-10%Tc), as shown in figure 2, with a nearly optimal Tc

onset of about 94 K.

2.2. Inelastic X-ray scattering

The IXS measurements were carried out on the undulator beam-line ID28 at

the European Synchrotron Radiation Facility, Grenoble. The incident beam is

monochromatized by a perfect plane Si-crystal (Verbeni et al 1996), working in extreme

backscattering geometry at the (9,9,9) reflection (17794 eV), with ≈ 0.7 THz resolution

and a wavelength λ =0.6968 Å, and at the (8,8,8) reflection (15817 eV) with ≈ 1.3

THz resolution, high flux and a wavelength λ =0.7839 Å. The monochromatic beam

is focused onto the sample position by a toroidal mirror in a 250×90 µm2 spot. The

scattered photons are analysed by a bench of five spherically-bent high-resolution Si

analysers (Masciovecchio et al 1996a, 1996b), placed on a 7 m long horizontal arm. The

analysers are held one next to the other with a constant angular offset of about 1.5◦ and

operate in backscattering geometry at the same reflection order as the monochromator.

The sample was kept at ambient temperature in a vacuum chamber in order to prevent

scattering from air and oxidation of the specimens. The sample chamber is held on a

standard diffraction goniometer. The energy (hν) scans are performed by varying the

monochromator temperature while keeping the analyser crystals at a fixed temperature.

Further details of the technique can be found in the reviews of Sette et al (1996) and

Burkel (2000). Krisch et al (2002) give a detailed description of the set-up for the ID28

spectrometer at ESRF, as used in the present work.
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IXS scans were taken at Q=G+q points of the reciprocal lattice, where G is the

zone centre vector, and q is the reduced vector which corresponds to the phonon

propagation vector. Longitudinal or (quasi-)transverse phonon polarisation can be

selected according to the relative direction of q and Q: parallel for longitudinal scans or

(nearly) perpendicular in the second case.

2.3. Data analysis

The energy scans are fitted using a sum of Pseudo-Voigt functions:

I

(

(1 − η)
Γ2

(ǫ − ǫ0)2 + Γ2
+ η exp

(

−
(ln 2)(ǫ − ǫ0)

2

Γ2

))

(1)

where ǫ = h̄ω = hν is the energy, for both the elastic and the inelastic contributions.

The half-width-half-maximum (HWHM) Γ is fixed to the value obtained from a fit of

the elastic line due to diffuse scattering. The instrumental line-shape parameter η was

taken from a fit to IXS data of Nitrogen (Cunsolo et al 2003) at Q≈1.9 Å−1, P=0.25

bar and T=66.4 K, where the diffusion is purely elastic as established by Carneiro and

McTague (1975). The line shape described above is in excellent agreement with the

instrumental line-shape as can be seen from the elastic signal fit in the energy scans of

figure 3. The position ǫ0 and intensity I of this model are fitted to the IXS signal from

the phonons of the HgBa2CuO4+δ crystals using a χ2-minimisation routine (James and

Roos 1975), with the condition that the detailed balance between Stokes and anti-Stokes

excitations is fulfilled. A constant background, coming essentially from electronic noise,

is added.

2.4. Numerical modelling

Phonon mode frequencies and related atomic displacements where obtained from the

diagonalisation of the dynamical matrix of a classical shell model with atomic potentials,

including screened Coulomb interactions. The matrix was built and diagonalised using

the OpenPhonon code (Mirone 2003, Mirone and d’Astuto 2003), as in d’Astuto et al

(2002, 2003).

The PDOS is constructed as a 200 points histogram, whose frequency coordinates

range from zero up to the maximum eigen-frequency of the system. The histogram bins

are filled calculating the eigen-frequencies over the Brillouin zone on a 11×11×11 grid.

Symmetries are used to reduce the number of necessary calculations. To get the partial

DOS for a given site group, the contributions are weighted when added on a particular

bin. The weight is calculated as the modulus square of the eigenvector projection over

the considered degrees of freedom (Mirone 2003, Mirone and d’Astuto 2003).

3. Results

Figure 3 reports some representative IXS scans in Hg-1201. Each graph corresponds to

a different scattering vector, in two different Brillouin zones. Every scan shows a central
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Figure 3. Typical inelastic X-ray scattering (IXS) scans of HgBa2CuO4+δ at different

scattering vectors, with ∼ 0.7 THz frequency resolution, normalised to the incident

photon flux on an arbitrary scale, and lines correspond to the best fit using the model as

explained in section 2. All data have been collected at room temperature in longitudinal

configuration (see text) parallel to the a* axes, with Q=G+q=(H,0,0)+(ξ,0,0).

Left side: scans in the third Brillouin zone, with H=2 and ξ between 0.05 and 0.5.

Right side: scans at higher Q, in the fourth and fifth zone, with H=3 and 4. In the

second and the fourth row of the figure, each pair of graphs correspond to the same

reduced q vector, with ξ=0.2 and 0.5.
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Figure 4. Phonon dispersion in HgBa2CuO4+δ , along the main symmetry directions

with the reduced vector in-plane ([ξ,0,0] and [ξ,ξ,0]), and perpendicular to the a*b*

plane [0,0,ζ]. Symbols represent the experimental frequencies determined from the IXS

data as described in the text, continuous lines correspond to the calculate dispersion

(see section 3 and table 1).

peak, at zero frequency, due to the elastic diffuse scattering, and one or more pairs of

peaks due to the inelastic scattering from phonons, corresponding to the Stokes and

anti-Stokes components of each mode. Note that some scattering vectors correspond to

the same reduced reciprocal lattice vector in two different Brillouin zones, showing the

variation in intensity due to the change in the dynamical structure factor. The inelastic

lines with the greater intensity are usually well resolved, with the exception of the scan

at Q=(2.05,0,0), where the inelastic contribution is too close to the elastic one, resulting

in a pair of shoulders on both sides of the elastic line.

The variation of the frequencies of the phonon modes with the reduced scattering

vector q, obtained by the IXS scans as described above, are shown in figure 4, for

the main symmetry direction in-plane (Σ and ∆) and along c* (Λ). The two highest

optic branches along Λ (right panel of figure 4), whose energy separation is less than the

experimental resolution, have been measured in separate scans performed in two different

Brillouin zones, according to the calculated intensities. Here we also show the calculated

dispersion with the empiric model previously described, obtained using the set of atomic

potentials reported in table 1. Note that a degeneracy of the in-plane longitudinal and

transverse modes is calculated at the Σ zone boundary, as already reported by Stachiotti

et al (1995). Within the experimental accuracy, a similar degeneracy appear in the data

at the ∆ zone boundary.

Most of the parameters of table 1 are in agreement with the values reported by

Renker et al (1996) and Chaplot et al (1995). Nevertheless some discrepancies have
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Site(κ) Zκ(e) Yκ(e) Kκ(Nm−1)

Hg 1.22 2 700

Ba 1.69 3 700

Cu 1.64 3 2000

O(1,2) -1.56 -3 1800

Interaction (κ − κ′) V ◦

BM (eV) rκ,κ′(Å)

Hg-Ba 2000 0.350

Ba-Cu 2000 0.335

Hg-O(1) 2000 0.280

Hg-O(2) 2000 0.280 FL = FT = 40 (Nm−1)

Ba-O(1) 2500 0.315

Ba-O(2) 2500 0.325

Cu-O(1) 3950 0.228

Cu-O(2) 460 0.353

O(i)-O(j) i,j=1,2 2000 0.284 V ◦

V W = -100 (eV Å6)

Table 1. Atomic Born von-Karman potential parameter for the calculation of the

phonons dispersion (figure 4, bottom panel) and density of state (figure 5, bottom

panel). For the definition of the potentials see Chaplot et al (1995), and Mirone and

d’Astuto (2003).

to be mentioned: the Born - Mayer potentials for the Ba-O(1) and Ba-O(2) bonds are

different from the Ba-O potential in Chaplot et al (1995), with the first radius rκ,κ′

slightly shorter and the second slightly larger, according to Renker et al (1996). Using a

mercury ion polarisability of 700 Nm−1 ¶, and a slightly stiffer additional force constant

along the Hg-O(2) bond, if compared to the one of Renker et al (1996), we found a good

agreement with our experimental dispersion. The histogram of the PDOS calculated

with the parameters of table 1 is shown in figure 5.

In table 2 the calculated Raman shift frequencies for the four Raman active modes

together with the experimental ones as found by Zhou et al (1996b) are reported (other

Raman measurements, as Krantz et al (1994), Lee et al (1994), Poulakis et al (1999) and

Cai et al (2001), give similar results). Note that the discrepancy between the calculated

A1g Ba mode frequency and the experimental Raman value, of about 0.9 THz, is also

present if considering our IXS data, as reported in the central panel of figure 4, although

the difference in our case is only ∼ 0.5 THz.

¶ Note that this polarisability has the same value given by Chaplot et al (1995) for the barium ion
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Mode Exp. (cm−1) Exp. (THz) Shell Model (THz)

A1g O(2) 592 17.75 17.23

Eg O(2) 165 4.95 7.88

A1g Ba 161 4.83 3.92

Eg Ba 76 2.28 2.84

Table 2. Comparison between the experimental Raman shift (Zhou et al 1996b)

and the Shell model (table 1) calculation results for some Raman active mode. For

a graphical representation and a symmetry analysis of the modes see Stachiotti et al

(1995) and Zhou et al (1996b).

Finally, by looking at figure 6, in which we report an energy scan performed with

the low resolution set up, we note the presence of a weak signal at high frequency. This

signal can be assigned to the in plane oxygen vibrations.

4. Discussion

The main problem arising from the model calculation of this system using atomic

potentials is that the transverse acoustic in-plane modes are not stable. In order to

remove this instability it is necessary to add a force constant, which makes the bond

between the mercury atom and the apical oxygen O(2) less soft against both longitudinal

and transverse strains. This because, as pointed out by Pintschovius and Reichardt

(1998), open structures can not be stabilised by simple two body ionic forces, but

need the rigidity of covalent bonds. Therefore we have optimised this force constant

parameter in order to leave the others atomic potential compatible with the common

potential model established by Chaplot and co-workers (1995). We stress here that we

have not performed a fit of the experimental frequencies, given the limited amount of

data. In the future, a refined model will be given on the base of a more complete set

of measurement, including at least some of the high frequency modes. For the present

purpose we estimate that this accuracy is sufficient.

Concerning the discrepancy with the Raman data, it has to be noted that: first

Zhou and co-workers (1996b) express some doubts on the assignment of the signal at

4.83 THz and at 4.95 THz to the two modes A1g Ba and Eg O(2) respectively; second,

no direct comparison with the IXS data is possible, since spectra at the zone centre are,

in most cases, dominated by strong elastic scattering, masking the weak signal from

the optical branches. Therefore we can only compare the model with IXS results in all
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the Brillouin zone but close to Γ, and with Raman results at the zone centre. Further

investigation are maybe necessary, as suggested by Zhou et al (1996b), for the correct

assignment of the zone centre frequencies.

5. Conclusion

We have presented the first measurements of the phonon dispersion in superconducting

Hg-1201. This is an important starting point for further investigations aiming in

detecting possible anomalies which can be related to an electron-phonon coupling

effect, especially the one concerning the high frequency longitudinal optic mode due

to oxygen vibration, as previously observed in other cuprate systems (Fukuda et al

2003, Chung et al 2003, d’Astuto et al 2002, 2003 and Pintschovius and Reichardt

1998 and references therein). This search is particularly important in the system Hg-



Phonon dispersion in Hg-1201 11

12 18 24
ε (meV)

0

5

10

15

co
un

ts
/1

2 
m

in

HgBa2CuO4+d - Q = (2.9,0,0)

0 10 20
0

500

1000

1500

2000

2500

Figure 6. Scan at Q=(2.9,0,0), with a resolution of 1.3 THz, using the (888)

monochromator reflection.

1201 as it can be considered as the simplest and most perfect prototype of cuprate

superconductors. Further efforts have to be made on the experimental side, using IXS

technique and Raman spectroscopy, which will greatly benefit from the present reference

data and which can be guided by the above proposed model. The spectrum in figure 6

is very promising in that sense, also taking into account the recent improvement in the

spectrometer efficiency and in the sample growth.

Possible ab-initio determinations of the phonon dispersion can also be very useful

for this purpose, and can be previously checked against the present set of data.
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