42 research outputs found

    Atmospheric freeze drying assisted by power ultrasound

    Full text link
    [EN] Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10ºC) and relative humidity (10%) with (20.5 kWm-3, USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.Santacatalina Bonet, JV.; Carcel Carrión, JA.; Simal, S.; García Pérez, JV.; Mulet Pons, A. (2012). Atmospheric freeze drying assisted by power ultrasound. IOP Conference Series: Materials Science and Engineering. 42:5-8. doi:10.1088/1757-899X/42/1/012021S5842Stawczyk, J., Li, S., Witrowa-Rajchert, D., & Fabisiak, A. (2006). Kinetics of Atmospheric Freeze-drying of Apple. Transport in Porous Media, 66(1-2), 159-172. doi:10.1007/s11242-006-9012-4Wolff, E., & Gibert, H. (1990). ATMOSPHERIC FREEZE-DRYING PART 1 : DESIGN, EXPERIMENTAL INVESTIGATION AND ENERGY-SAVING ADVANTAGES. Drying Technology, 8(2), 385-404. doi:10.1080/07373939008959890García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. doi:10.1016/j.jfoodeng.2006.01.02

    Environmental Statistics and Data Analysis

    No full text

    Análise de séries temporais na operação de sistema de tratamento de águas residuárias de abatedouro de frango Time series analysis on the operation of a poultry slaughterhouse wastewater treatment plant

    No full text
    Esse trabalho apresenta a avaliação de dados de operação de sistema de tratamento de águas residuárias de abatedouro de frango, através da análise de séries temporais. O objetivo principal foi a obtenção de modelo de previsão capaz de antecipar o controle da operação do sistema de tratamento de águas residuárias do abatedouro, constituindo subsídio para obtenção de estratégias de gestão do sistema de tratamento existente. Registros de 42 meses de parâmetros de monitoramento foram utilizados na modelagem de séries temporais. O modelo de ajuste exponencial para previsão dos valores de demanda química de oxigênio do efluente industrial e do afluente dos reatores biológicos apresentou bom ajuste (erro percentual absoluto da média aritmética menor que 20%) com diferenças na capacidade de previsão menores que 15%.<br>This paper presents the evaluation of the operating data of the poultry slaughterhouse wastewater treatment plant, by means of time series analysis. It aimed at obtaining a forecasting model able to have the operation of the slaughterhouse wastewater treatment system under control, what leads to subsidy for acquiring the management strategies of the wastewater treatment system. Records of 42 months of the monitoring parameters were used in the time series modeling. The exponentially weighted moving average model for obtaining chemical oxygen demand values of the industrial effluent and the reactors influent stream showed proper adjustment (mean absolute percentage error values smaller than 20%), where the differences on the prediction feasibility were smaller than 15%

    Morehead City, NC, Uses an ARIMA Study to End a State Moratorium on New Construction

    No full text
    corecore