49 research outputs found

    Focus on lens connexins

    Get PDF
    The lens is an avascular organ composed of an anterior epithelial cell layer and fiber cells that form the bulk of the organ. The lens expresses connexin43 (Cx43), connexin46 (Cx46) and connexin50 (Cx50). Epithelial Cx50 has critical roles in cell proliferation and differentiation, likely involving growth factor-dependent signaling pathways. Both Cx46 and Cx50 are crucial for lens transparency; mutations in their genes have been linked to congenital and age-related cataracts. Congenital cataract-associated connexin mutants can affect protein trafficking, stability and/or function, and the functional effects may differ between gap junction channels and hemichannels. Dominantly inherited cataracts may result from effects of the connexin mutant on its wild type isotype, the other co-expressed wild type connexin and/or its interaction with other cellular components.NIH/RO1EY08368DFG/SFB/Transregio37US National Institutes of Health/RO1EY08368DFG/SFB/Transregio 3

    Polyvalent Cations Constitute the Voltage Gating Particle in Human Connexin37 Hemichannels

    Get PDF
    Connexins oligomerize to form intercellular channels that gate in response to voltage and chemical agents such as divalent cations. Historically, these are believed to be two independent processes. Here, data for human connexin37 (hCx37) hemichannels indicate that voltage gating can be explained as block/unblock without the necessity for an independent voltage gate. hCx37 hemichannels closed at negative potentials and opened in a time-dependent fashion at positive potentials. In the absence of polyvalent cations, however, the channels were open at relatively negative potentials, passing current linearly with respect to voltage. Current at negative potentials could be inhibited in a concentration-dependent manner by the addition of polyvalent cations to the bathing solution. Inhibition could be explained as voltage-dependent block of hCx37, with the field acting directly on polyvalent cations, driving them through the pore to an intracellular site. At positive potentials, in the presence of polyvalent cations, the field favored polyvalent efflux from the intracellular blocking site, allowing current flow. The rate of appearance of current depended on the species and valence of the polyvalent cation in the bathing solution. The rate of current decay upon repolarization depended on the concentration of polyvalent cations in the bathing solution, consistent with deactivation by polyvalent block, and was rapid (time constants of tens of milliseconds), implying a high local concentration of polyvalents in or near the channel pore. Sustained depolarization slowed deactivation in a flux-dependent, voltage- and time-independent fashion. The model for hCx37 voltage gating as polyvalent block/unblock can be expanded to account for observations in the literature regarding hCx37 gap junction channel behavior

    Residual Cx45 and its relationship to Cx43 in murine ventricular myocardium

    Get PDF
    Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin (Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/µg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre(+);Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates eight Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks

    Connexin Mutants Compromise the Lens Circulation and Cause Cataracts through Biomineralization

    No full text
    Gap junction-mediated intercellular communication facilitates the circulation of ions, small molecules, and metabolites in the avascular eye lens. Mutants of the lens fiber cell gap junction proteins, connexin46 (Cx46) and connexin50 (Cx50), cause cataracts in people and in mice. Studies in mouse models have begun to elucidate the mechanisms by which these mutants lead to cataracts. The expression of the dominant mutants causes severe decreases in connexin levels, reducing the gap junctional communication between lens fiber cells and compromising the lens circulation. The impairment of the lens circulation results in several changes, including the accumulation of Ca2+ in central lens regions, leading to the formation of precipitates that stain with Alizarin red. The cataract morphology and the distribution of Alizarin red-stained material are similar, suggesting that the cataracts result from biomineralization within the organ. In this review, we suggest that this may be a general process for the formation of cataracts of different etiologies

    Connexin mutants and cataracts

    Get PDF
    The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8) have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating) or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death) and formation of cytoplasmic accumulations (that may act as light scattering particles). These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues
    corecore