118 research outputs found

    Öffentlich-private Partnerschaften und kommunale Verschuldung

    Get PDF
    The present paper examines whether there is a connection between the debt of a municipality and its tendency to implement infrastructure projects in the form of public-private partnerships. Similar to loans, public-private partnerships (PPPs) postpone public sector payment obligations into the future. It is therefore sometimes argued that local authorities misuse PPPs to disguise the true level of public debt. Municipalities that have already used the debt instrument intensively should then have a higher PPP tendency. The present paper does not find any reliable evidence for this. Employing data of the state of North Rhine-Westfalia the paper finds that municipalities with PPPs do in fact have higher levels of debt. In an econometric analysis, however, the effect of debt on the number of PPPs turns out to be insignificant and also quantitatively negligible

    Learning-Based Real-Time Torque Prediction for Grasping Unknown Objects with a Multi-Fingered Hand

    Get PDF
    When grasping objects with a multi-finger hand, it is crucial for the grasp stability to apply the correct torques at each joint so that external forces are countered. Most current systems use simple heuristics instead of modeling the required torque correctly. Instead, we propose a learning-based approach that is able to predict torques for grasps on unknown objects in real-time. The neural network, trained end-to-end using supervised learning, is shown to predict torques that are more efficient, and the objects are held with less involuntary movement compared to all tested heuristic baselines. Specifically, for 90 % of the grasps the translational deviation of the object is below 2.9 mm and the rotational below 3.1°. To generate training data, we formulate the analytical computation of torques as an optimization problem and handle the indeterminacy of multi-contacts using an elastic model. We further show that the network generalizes to predict torques for unknown objects on the real robot system with an inference time of 1.5 ms

    Self-Contained Calibration of an Elastic Humanoid Upper Body with a Single Head-Mounted RGB Camera

    Get PDF
    When a humanoid robot performs a manipulation task, it first makes a model of the world using its visual sensors and then plans the motion of its body in this model. For this, precise calibration of the camera parameters and the kinematic tree is needed. Besides the accuracy of the calibrated model, the calibration process should be fast and self-contained, i.e., no external measurement equipment should be used. Therefore, we extend our prior work on calibrating the elastic upper body of DLR's Agile Justin by now using only its internal head-mounted RGB camera. We use simple visual markers at the ends of the kinematic chain and one in front of the robot, mounted on a pole, to get measurements for the whole kinematic tree. To ensure that the task-relevant cartesian error at the end-effectors is minimized, we introduce virtual noise to fit our imperfect robot model so that the pixel error has a higher weight if the marker is further away from the camera. This correction reduces the cartesian error by more than 20%, resulting in a final accuracy of 3.9mm on average and 9.1mm in the worst case. This way, we achieve the same precision as in our previous work, where an external cartesian tracking system was used

    First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors

    Get PDF
    Inmunomodulación; Linfocitos T; Microambiente tumoralImmunomodulació; Limfòcits T; Microambient tumoralImmunomodulation; T-Lymphocytes; Tumor microenvironmentBackground OX40 is a costimulatory receptor upregulated on antigen-activated T cells and constitutively expressed on regulatory T cells (Tregs). INCAGN01949, a fully human immunoglobulin G1κ anti-OX40 agonist monoclonal antibody, was designed to promote tumor-specific immunity by effector T-cell activation and Fcγ receptor-mediated Treg depletion. This first-in-human study was conducted to determine the safety, tolerability, and preliminary efficacy of INCAGN01949. Methods Phase I/II, open-label, non-randomized, dose-escalation and dose-expansion study conducted in patients with advanced or metastatic solid tumors. Patients received INCAGN01949 monotherapy (7–1400 mg) in 14-day cycles while deriving benefit. Safety measures, clinical activity, pharmacokinetics, and pharmacodynamic effects were assessed and summarized with descriptive statistics. Results Eighty-seven patients were enrolled; most common tumor types were colorectal (17.2%), ovarian (8.0%), and non-small cell lung (6.9%) cancers. Patients received a median three (range 1–9) prior therapies, including immunotherapy in 24 patients (27.6%). Maximum tolerated dose was not reached; one patient (1.1%) receiving 350 mg dose reported dose-limiting toxicity of grade 3 colitis. Treatment-related adverse events were reported in 45 patients (51.7%), with fatigue (16 (18.4%)), rash (6 (6.9%)), and diarrhea (6 (6.9%)) being most frequent. One patient (1.1%) with metastatic gallbladder cancer achieved a partial response (duration of 6.3 months), and 23 patients (26.4%) achieved stable disease (lasting >6 months in one patient). OX40 receptor occupancy was maintained over 90% among all patients receiving doses of ≥200 mg, while no treatment-emergent antidrug antibodies were detected across all dose levels. Pharmacodynamic results demonstrated that treatment with INCAGN01949 did not enhance proliferation or activation of T cells in peripheral blood or reduce circulating Tregs, and analyses of tumor biopsies did not demonstrate any consistent increase in effector T-cell infiltration or function, or decrease in infiltrating Tregs. Conclusion No safety concerns were observed with INCAGN01949 monotherapy in patients with metastatic or advanced solid tumors. However, tumor responses and pharmacodynamic effects on T cells in peripheral blood and post-therapy tumor biopsies were limited. Studies evaluating INCAGN01949 in combination with other therapies are needed to further evaluate the potential of OX40 agonism as a therapeutic approach in patients with advanced solid tumors.This study was funded by Incyte Corporation (Wilmington, USA)

    Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker.

    Get PDF
    Background -Preeclampsia (PE) is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human-specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in PE. Our study aims at investigating whether disturbed imprinting contributes to PE. Methods -We first aimed at confirming that PE is a disease of the placenta by generating and analysing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from normal and PE patients. Next, we identified differentially expressed genes (DEGs) in PE placenta, and intersected them with the list of human imprinted genes. We employed bioinformatics/statistical analyses to confirm association between imprinting and PE, and to predict biological processes affected in PE. Validation included epigenetic and cellular assays. Regarding human-specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque and mouse preimplantation embryogenesis. Results -We found disturbed placental imprinting in PE and revealed potential candidates, including GATA3 and DLX5, with poorly explored imprinted status and no prior association with PE. Due to loss of imprinting DLX5 was upregulated in 69% of PE placentas. Levels of DLX5 correlated with classical PE marker. DLX5 is expressed in human, but not in murine trophoblast. The DLX5(high) phenotype resulted in reduced proliferation, increased metabolism and ER stress-response activation in trophoblasts in vitro The transcriptional profile of such cells mimics the transcriptome of PE placentas. Pan-mammalian comparative analysis identified DLX5 as a part of the human-specific regulatory network of trophoblast differentiation. Conclusions -Our analysis provides evidence of a true association between disturbed imprinting, gene expression and PE. Due to disturbed imprinting, the upregulated DLX5 affects trophoblast proliferation. Our in vitro model might fill a vital niche in PE research. Human-specific regulatory circuitry of DLX5 might help to explain certain aspects of PE
    corecore