39 research outputs found

    Determinants of the voltage dependence of G protein modulation within calcium channel β subunits

    Get PDF
    CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone

    Successful Cognitive Aging in Rats: A Role for mGluR5 Glutamate Receptors, Homer 1 Proteins and Downstream Signaling Pathways

    Get PDF
    Normal aging is associated with impairments in cognition, especially learning and memory. However, major individual differences are known to exist. Using the classical Morris Water Maze (MWM) task, we discriminated a population of 24-months old Long Evans aged rats in two groups - memory-impaired (AI) and memory-unimpaired (AU) in comparison with 6-months old adult animals. AI rats presented deficits in learning, reverse memory and retention. At the molecular level, an increase in metabotropic glutamate receptors 5 (mGluR5) was observed in post-synaptic densities (PSD) in the hippocampus of AU rats after training. Scaffolding Homer 1b/c proteins binding to group 1 mGluR facilitate coupling with its signaling effectors while Homer 1a reduces it. Both Homer 1a and 1b/c levels were up-regulated in the hippocampus PSD of AU animals following MWM task. Using immunohistochemistry we further demonstrated that mGluR5 as well as Homer 1b/c stainings were enhanced in the CA1 hippocampus sub-field of AU animals. In fact mGluR5 and Homer 1 isoforms were more abundant and co-localized in the hippocampal dendrites in AU rats. However, the ratio of Homer 1a/Homer 1b/c bound to mGluR5 in the PSD was four times lower for AU animals compared to AI rats. Consequently, AU animals presented higher PKCγ, ERK, p70S6K, mTOR and CREB activation. Finally the expression of immediate early gene Arc/Arg3.1 was shown to be higher in AU rats in accordance with its role in spatial memory consolidation. On the basis of these results, a model of successful cognitive aging with a critical role for mGluR5, Homer 1 proteins and downstream signalling pathways is proposed here

    Chiral CE to unravel \u201cMethorphan dilemma\u201d

    No full text
    Chiral analysis of methorphan and its major metabolites by CD-CZE in postmortem bloo

    Micellar electrokinetic chromatography: A new simple tool for the analysis of synthetic cannabinoids in herbal blends and for the rapid estimation of their logP values

    No full text
    For the first time a capillary separation based on micellar electrokinetic chromatography (MEKC) with diode array detection (DAD) was developed and validated for the rapid determination of synthetic cannabinoids in herbal blends. Separations were carried out on a 30 \u3bcm(ID) 7 40 cm uncoated fused silica capillaries. The optimized buffer electrolyte was composed of 25 mM sodium tetraborate pH 8.0, 30 mM SDS and n-propanol 20% (v/v). Separations were performed at 30 kV. Sample injection conditions were 0.5 psi, 10s. Diazepam and JWH-015 were used as internal standards. The determination of the analytes was based on the UV signal recorded at 220 nm, corresponding to the maximum wavelength of absorbance of the molecules, whereas peak identification and purity check were also performed on the basis of the acquisition of UV spectra between 200 and 400 nm wavelengths. Under the described conditions, the separation of the compounds was achieved in 25 min without any significant interference from the matrix. Linearity was assessed within a concentration range from 5 to 100 \u3bcg/mL. The intra-day and inter-day imprecision values were below 2.45% for relative migration times and below 10.75% for relative peak areas. The present method was successfully applied to the direct determination of synthetic cannabinoids in 15 different herbal blend samples requiring only sample dilution. In addition, the developed MEKC separation was also applied to estimate the octanol/water partition coefficients (logP) of these new and poorly known molecules
    corecore