7 research outputs found

    Identification of genes differentially expressed in T cells following stimulation with the chemokines CXCL12 and CXCL10

    Get PDF
    BACKGROUND: Chemokines are involved in many biological activities ranging from leukocyte differentiation to neuronal morphogenesis. Despite numerous reports describing chemokine function, little is known about the molecular changes induced by cytokines. METHODS: We have isolated and identified by differential display analysis 182 differentially expressed cDNAs from CXCR3-transfected Jurkat T cells following treatment with CXCL12 or CXCL10. These chemokine-modulated genes were further verified using quantitative RT-PCR and Western blot analysis. RESULTS: One hundred and forty-six of the cDNAs were successfully cloned, sequenced, and identified by BLAST. Following removal of redundant and non-informative clones, seventeen mRNAs were found to be differentially expressed post treatment with either chemokine ligand with several representing known genes with established functions. Twenty-one genes were upregulated in these transfected Jurkat cells following both CXCL12 and CXCL10, four genes displayed a discordant response and seven genes were downregulated upon treatment with either chemokine. Identified genes include geminin (GEM), thioredoxin (TXN), DEAD/H box polypeptide 1 (DDX1), growth hormone inducible transmembrane protein (GHITM), and transcription elongation regulator 1 (TCERG1). Subsequent analysis of several of these genes using semi-quantitative PCR and western blot analysis confirmed their differential expression post ligand treatment. CONCLUSIONS: Together, these results provide insight into chemokine-induced gene activation and identify potentially novel functions for known genes in chemokine biology

    Transcriptome analysis of murine thymocytes reveals age-associated changes in thymic gene expression

    No full text
    The decline in adaptive immunity, na&#239;ve T-cell output and a contraction in the peripheral T cell receptor (TCR) repertoire with age are largely attributable to thymic involution and the loss of critical cytokines and hormones within the thymic microenvironment. To assess the molecular changes associated with this loss of thymic function, we used cDNA microarray analyses to examine the transcriptomes of thymocytes from mice of various ages ranging from very young (1 month) to very old (24 months). Genes associated with various biological and molecular processes including oxidative phosphorylation, T- and B- cell receptor signaling and antigen presentation were observed to significantly change with thymocyte age. These include several immunoglobulin chains, chemokine and ribosomal proteins, annexin A2, vav 1 and several S100 signaling proteins. The increased expression of immunoglobulin genes in aged thymocytes could be attributed to the thymic B cells which were found to be actively producing IgG and IgM antibodies. Upon further examination, we found that purified thymic T cells derived from aged but not young thymi also exhibited IgM on their cell surface suggesting the possible presence of auto-antibodies on the surface thymocytes with advancing age. These studies provide valuable insight into the cellular and molecular mechanisms associated with thymic aging.</p
    corecore