37 research outputs found
T-Cell Subsets in Rheumatoid Arthritis Patients on Long-Term Anti-TNF or IL-6 Receptor Blocker Therapy
Data on the impact of biological therapies on the T-cell phenotype in rheumatoid arthritis are limited. Here, we prospectively measured the percentages of 15 circulating T-cell subtypes using flow cytometry. We obtained transversal and longitudinal data in 30 anti-TNF responders, 19 secondary anti-TNF nonresponders, and 43 IL-6R antagonist responders, before, 8 weeks and at least 6 months after biological therapy. Untreated RA patients and healthy controls were also included. The important findings are the following: ( 1) the proportion of regulatory T-cells (Tregs) which are decreased in untreated RA patients becomes normal in all long-term-treated groups; ( 2) in anti-TNF responders as well as in nonresponders, the frequencies of naive CD4+ and CD8+ cells are lower, whereas those of proinflammatory Th1, Th2, and Th17 cells and HLA-DR+-activated cells are higher than those in untreated RA or healthy controls; ( 3) in IL-6R responders, Th1 proportion is decreased, while that of Th2 and Th17 is increased as compared to that in anti-TNF-treated patients and controls; ( 4) pending confirmation, a CD4CD69 ratio <2.43 at baseline, could be useful to predict a good therapeutic response to anti-TNF therapy. This study provides comprehensive information regarding the long-term impacts of those biological therapies on the ecotaxis of T-cells in RA
Studia Litteraria
Bevezető 7-8.
Fenyő István A francia restauráció történetírásának nyomában 9-36.
Lőkös István: Magyar interferenciák és párhuzamok egy horvát
regényben (Josip Eugen Tomic: Melita) 37-48.
Imre László: Andrej Belij és az orosz szimbolista regény 49-68.
Tamás Attila: Kosztolányi Dezső és az osztrák líra 69-84.
Berta Erzsébet: Georg Trakl Magyarországon 1945 előtt 85-116.
Görömbei András: Bolgár elemek Nagy László költészetében 117-140
Impact of aging on calcium influx and potassium channel characteristics of T lymphocytes
Adaptive immunity and T cell function are affected by aging. Calcium influx patterns, regulated by Kv1.3 and IKCa1 potassium channels, influence T cell activation. We aimed to compare calcium influx kinetics in CD8, Th1 and Th2 cells in human peripheral blood samples obtained from five different age groups (cord blood, 10-15 ys, 25-40 ys, 45-55 ys, 60-75 ys).We measured calcium influx using flow cytometry in samples treated with or without specific inhibitors of Kv1.3 and IKCa1 channels (MGTX and TRAM, respectively).Calcium influx was higher in Th1 cells of adults, however, its extent decreased again with aging. Importantly, these changes were not detected in Th2 cells, where the pattern of calcium influx kinetics is similar throughout all investigated age groups. MGTX had a more pronounced inhibitory effect on calcium influx in Th2 cells, while in Th1 cells the same was true for TRAM in the 25-40 ys and 45-55 ys groups. Calcium influx of CD8 cells were inhibited to a similar extent by both applied inhibitors in these groups, and had no effect in the elderly.Altered lymphocyte potassium channel inhibitory patterns, regulators of calcium influx kinetics, might contribute to the development of age-related changes of T cell function
The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model
Background: autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting around 1 out of 68 children and its incidence shows an increasing tendency. There is currently no effective treatment for ASD. In autism research, the valproate (VPA)-induced autism rodent model is widely accepted. Our previous results showed that intraamygdaloid oxytocin (OT) has anxiolytic effects on rats showing autistic signs under the VPA-induced autism model. Methods: rats were stereotaxically implanted with guide cannulae bilaterally and received intraamygdaloid microinjections. In the present study, we investigated the possible role of intraamygdaloid OT and D2 dopamine (DA) receptors on reinforcement using VPA-treated rats in a conditioned place preference test. OT and/or an OT receptor antagonist or a D2 DA antagonist were microinjected into the central nucleus of the amygdala (CeA). Results: valproate-treated rats receiving 10 ng OT spent significantly longer time in the treatment quadrant during the test session of the conditioned place preference test. Prior treatment with an OT receptor antagonist or with a D2 DA receptor antagonist blocked the positive reinforcing effects of OT. The OT receptor antagonist or D2 DA antagonist in themselves did not influence the time rats spent in the treatment quadrant. Conclusions: Our results show that OT has positive reinforcing effects under the VPA-induced autism rodent model and these effects are OT receptor-specific. Our data also suggest that the DAergic system plays a role in the positive reinforcing effects of OT because the D2 DA receptor antagonist can block these actions
Intraamygdaloid Oxytocin Reduces Anxiety in the Valproate-Induced Autism Rat Model
Background: Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder affecting about 1.5% of children, and its prevalence is increasing. Anxiety is one of the most common comorbid signs of ASD. Despite the increasing prevalence, the pathophysiology of ASD is still poorly understood, and its proper treatment has not been defined yet. In order to develop new therapeutic approaches, the valproate- (VPA) induced rodent model of autism can be an appropriate tool. Oxytocin (OT), as a prosocial hormone, may ameliorate some symptoms of ASD. Methods: In the present study, we investigated the possible anxiolytic effect of intraamygdaloid OT on VPA-treated rats using the elevated plus maze test. Results: Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time in the open arms of the elevated plus maze apparatus and performed significantly less head dips from the open arms. Bilateral OT microinjection into the central nucleus of the amygdala increased the time spent in the open arms and the number of head dips and reduced the anxiety to the healthy control level. An OT receptor antagonist blocked the anxiolytic effects of OT. The antagonist by itself did not influence the time rats spent in the open arms. Conclusions: Our results show that intraamygdaloid OT has anxiolytic effects in autistic rats