43 research outputs found

    Characterisation of the global transcriptional response to heat shock and the impact of individual genetic variation

    Get PDF
    Abstract Background The heat shock transcriptional response is essential to effective cellular function under stress. This is a highly heritable trait but the nature and extent of inter-individual variation in heat shock response remains unresolved. Methods We determined global transcription profiles of the heat shock response for a panel of lymphoblastoid cell lines established from 60 founder individuals in the Yoruba HapMap population. We explore the observed differentially expressed gene sets following heat shock, establishing functional annotations, underlying networks and nodal genes involving heat shock factor 1 recruitment. We define a multivariate phenotype for the global transcriptional response to heat shock using partial least squares regression and map this quantitative trait to associated genetic variation in search of the major genomic modulators. Results A comprehensive dataset of differentially expressed genes following heat shock in humans is presented. We identify nodal genes downstream of heat shock factor 1 in this gene set, notably involving ubiquitin C and small ubiquitin-like modifiers together with transcription factors. We dissect a multivariate phenotype for the global heat shock response which reveals distinct clustering of individuals in terms of variance of the heat shock response and involves differential expression of genes involved in DNA replication and cell division in some individuals. We find evidence of genetic associations for this multivariate response phenotype that involves trans effects modulating expression of genes following heat shock, including HSF1 and UBQLN1. Conclusion This study defines gene expression following heat shock for a cohort of individuals, establishing insights into the biology of the heat shock response and hypotheses for how variation in this may be modulated by underlying genetic diversity

    COVID-19 disaster management plans for two laboratory animal facilities in South Africa

    Get PDF
    Policies and guidelines are available for acute disasters such as earthquakes, fire and floods, however, little is available on how laboratory animal facilities should mitigate subacute disasters like the COVID-19 pandemic that imposed major restrictions on the free movement of people. As such, laboratory animal facilities had to find plausible mitigating measures to safeguard the welfare of animals in their care, to prevent animal suffering if staff could not reach the animals, albeit with limited time. The simplest approach was to stop active experiments and halt animal breeding, or to euthanize all animals. Challenges with such methods included the ethical debate regarding euthanasia of animals at the start of a pandemic and the need to perform a harm–benefit analysis while drafting the disaster plans, termination of studies at advanced stages with information loss or killing of genetically modified strains that would be difficult to replace. Two research animal facilities in South Africa addressed these challenges by implementing several changes such as allowing only essential studies to continue, maintaining small breeding colonies for essential strains, and providing staff with private transport for travelling to and from work to avoid public transport and risk of exposure to SARS-CoV-2. Engineering changes included redesigning working areas to cater for social distancing. The mitigating measures put in place by the two laboratory animal facilities were successful in ensuring the continued welfare of animals during the COVID-19 lockdown restrictions. These measures can be adopted in future pandemics that lead to restricted movement of staff.https://journals.sagepub.com/home/LANhj2022Paraclinical Science

    A One Medicine Mission for an Effective Rabies Therapy

    Get PDF
    Despite the disease's long history, little progress has been made toward a treatment for rabies. The prognosis for patient recovery remains dire. For any prospect of survival, patients require aggressive critical care, which physicians in rabies endemic areas may be reluctant or unable to provide given the cost, clinical expertise required, and uncertain outcome. Systematic clinical research into combination therapies is further hampered by sporadic occurrence of cases. In this Perspective, we examine the case for a One Medicine approach to accelerate development of an effective therapy for rabies through the veterinary care and investigational treatment of naturally infected dogs in appropriate circumstances. We review the pathogenesis of rabies virus in humans and dogs, including recent advances in our understanding of the molecular basis for the severe neurological dysfunction. We propose that four categories of disease process need to be managed in patients: viral propagation, neuronal degeneration, inflammation and systemic compromise. Compassionate critical care and investigational treatment of naturally infected dogs receiving supportive therapy that mimics the human clinical scenario could increase opportunities to study combination therapies that address these processes, and to identify biomarkers for prognosis and therapeutic response. We discuss the safety and ethics of this approach, and introduce the Canine Rabies Treatment Initiative, a non-profit organization with the mission to apply a One Medicine approach to the investigation of diagnostic, prognostic, and therapeutic options for rabies in naturally infected dogs, to accelerate transformation of rabies into a treatable disease for all patients

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Additional file 3: Table S1. of Characterisation of the global transcriptional response to heat shock and the impact of individual genetic variation

    No full text
    Differentially expressed genes following heat shock. Differentially expressed genes for a panel of 43 LCLs exposed to heat shock (42 °C for 1 h, 6 h recovery) and assayed by microarray are shown following limma analysis (FC >1.2, FDR <0.01). Table S2. GO categories enriched for upregulated genes. GO categories for differentially expressed genes upregulated following heat shock in LCLs are shown. Numbers of significant and expected genes shown, together with p values (Fisher’s exact test). Table S3. GO categories enriched for downregulated genes. GO categories for differentially expressed genes downregulated following heat shock in LCLs are shown. Numbers of significant and expected genes shown, together with p values (Fisher’s exact test). Table S4. Network analysis following heat shock. Networks identified on IPA analysis of differentially expressed genes (FC >1.2, FDR <0.01) following heat shock. Table S5. Genes with newly established links to heat shock response. Genes listed together with FC and FDR following heat shock, and p value for presence of the heat shock binding motif. Table S6. Summary of HSF-binding evidence for the promoters of novel and established heat shock response genes. Presence of ChIP-seq peak for HSF1 or HSF2 and HSF1 motif indicated in relation to heat shock genes. Table S7. Differential gene expression between PLS clusters. Differential gene expression between samples assigned to PLS cluster 1 and 2 as assessed by limma analysis is shown for all assayed probes. Table S8. GO categories enriched for genes with increased expression in cluster 2. GO categories for genes differentially expressed between PLS clusters. Categories enriched for genes with increased expression in cluster 2 are shown. Numbers of significant and expected genes shown, together with p values (Fisher’s exact test). Table S9. GO categories enriched for genes with increased expression in cluster 1. GO categories for genes differentially expressed between PLS clusters. Categories enriched for genes with increased expression in cluster 1 are shown. Numbers of significant and expected genes shown, together with p values (Fisher’s exact test). (XLSX 4875 kb

    Additional file 1: Figure S1. of Characterisation of the global transcriptional response to heat shock and the impact of individual genetic variation

    No full text
    PCA plot of ComBat corrected gene expression. PCA plot for gene expression in LCLs following heat shock post microarray processing and QC with individual lines coloured by BeadChIP. (PDF 166 kb

    OPARI2 OpenMP instrumenter (v2.0.7)

    No full text
    OPARI2 is a source-to-source instrumentation tool for OpenMP and hybrid codes. It surrounds OpenMP directives and runtime library calls with calls to the POMP2 measurement interface. As a user of OPARI2, you need to implement the POMP2 interface or use a tool that does so. The most convenient usage is via the measurement infrastructure Score-P.OPARI2 is available under the 3-clause BSD Open Source license
    corecore