8 research outputs found

    A modified low-protein infant formula supports adequate growth in healthy, term infants:a randomized, double-blind, equivalence trial

    Get PDF
    Background: A high protein intake in early life is associated with a risk of obesity later in life. The essential amino acid requirements of formula-fed infants have been reassessed recently, enabling a reduction in total protein content and thus in protein intake. Objectives: We aimed to assess the safety of an infant formula with a modified amino acid profile and a modified low-protein (mLP) content in healthy term-born infants. Outcomes were compared with a specifically designed control (CTRL) infant formula. Methods: In this double-blind, randomized controlled equivalence trial, infants received either mLP (1.7 g protein/100 kcal; n = 90) or CTRL formula (2.1 g protein/100 kcal; n = 88) from enrollment (age ≤ 45 d) to 6 mo of age. A breastfed group served as a reference (n = 67). Anthropometry and body composition were determined at baseline, 17 wk (including safety blood parameters), and 6 mo of age. The primary outcome was daily weight gain from enrollment up until the age of 17 wk (at an equivalence margin of ±3.0 g/d). Results: Weight gain from baseline (mean ± SD age: 31 ± 9 d) up to the age of 17 wk was equivalent between the mLP and CTRL formula groups (27.9 and 28.8 g/d, respectively; difference:-0.86 g/d; 90% CI:-2.36, 0.63 g/d). No differences in other growth parameters, body composition, or in adverse events were observed. Urea was significantly lower in the mLP formula group than in the CTRL formula group (-0.74 mmol/L; 95% CI:-0.97,-0.51 mmol/L; P < 0.001). Growth rates, fat mass, fat-free mass, and several essential amino acids were significantly higher in both formula groups than in the breastfed reference group. Conclusions: Feeding an infant formula with a modified amino acid profile and a lower protein content from an average age of 1 mo until the age of 6 mo is safe and supports an adequate growth, similar to that of infants consuming CTRL formula. This trial was registered at www.trialregister.nl as Trial NL4677

    Perspective:Moving Toward Desirable Linoleic Acid Content in Infant Formula

    Get PDF
    Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes

    Programming effects of an early-life diet containing large phospholipid-coated lipid globules are transient under continuous exposure to a high-fat diet

    No full text
    Breastfeeding is associated with a lower risk of developing obesity during childhood and adulthood compared to feeding infant milk formula (IMF). Previous studies have shown that an experimental IMF (eIMF; comprising Nuturis®), programmed mouse pups for a lower body weight and fat mass gain in adulthood when challenged with a high-fat diet (HFD), compared to a control IMF (cIMF). Nuturis has a lipid composition and structure more similar to breastmilk. Here, the long-term effects were tested of a similar eIMF, but with an adapted lipid composition, and a cIMF, on body weight, glucose homeostasis, liver and adipose tissue. Nutrient composition was similar for the eIMF and cIMF; the lipid fractions comprised ∼50% milkfat. C57BL/6JOlaHsd mice were fed cIMF or eIMF from postnatal (PN) day 16-42 followed by a HFD until PN168. Feeding eIMF versus cIMF in early life resulted in a lower body weight (-9%) and body fat deposition (-14%) in adulthood (PN105). The effect appeared transient, as from PN126 onward, after 12 weeks HFD, eIMF-fed mice caught up on controls and body and fat weights became comparable between groups. Glucose and energy metabolism were similar between groups. At dissection (PN168), eIMF-fed mice showed larger (+27%) epididymal fat depots and a lower (-26%) liver weight without clear morphological aberrations. Our data suggest the size and coating but not the lipid composition of IMF fat globules underlies the programming effect observed. Prolonged exposure to a HFD challenge partly overrules the programming effect of early diet

    Longitudinal human milk macronutrients, body composition and infant appetite during early life

    Get PDF
    Background & aims: Breastfeeding is the gold standard infant feeding. Data on macronutrients in relation to longitudinal body composition and appetite are very scarce. The aim of this study was to investigate longitudinal human milk macronutrients at 1 and 3 months in association with body composition and appetite during early life in healthy, term-born infants. We hypothesized that infants receiving higher caloric human milk would have more body fat mass and satiate earlier. Methods: In 133 exclusively breastfed infants (Sophia Pluto Cohort), human milk samples at 1 and 3 months were analyzed for macronutrients (fat, protein, carbohydrate) by MIRIS Human Milk Analyzer, with appetite assessment by Baby Eating Behavior Questionnaires. Fat mass (FM) and fat-free mass (FFM) were measured by PEA POD and DXA, and abdominal FM by ultrasound. Results: Milk samples showed large differences in macronutrients, particularly in fat content. Protein and energy content decreased significantly from 1 to 3 months. Fat and carbohydrate content tended to decrease (p = 0.066 and 0.081). Fat (g/100 ml) and energy (kcal/100 ml) content at 3 months were associated with FM% at 6 months (β 0.387 and 0.040, resp.) and gain in FM% from 1 to 6 months (β 0.088 and 0.009, resp.), but not with FM% at 2 years. Carbohydrate content at 3 months tended to associate with visceral FM at 2 years (β 0.290, p = 0.06). Infants receiving higher caloric milk were earlier satiated and finished feeding faster. Conclusions: Our longitudinal data show decreasing milk protein and energy content from age 1 to 3 months, while fat and carbohydrate tended to decrease. Macronutrient composition, particularly fat content, differed considerably between mothers. Milk fat and energy content at 3 months associated with gain in FM% from age 1 to 6 months, indicating that higher fat and energy content associate with higher gain in FM% during the critical window for adiposity programming. As infants receiving higher caloric breastfeeding were earlier satiated, this self-regulatory mechanism might prevent intake of excessive macronutrients. Online trial registry: NTR, NL7833

    Postprandial Amino Acid Kinetics of Milk Protein Mixtures are Affected by Composition, but Not Denaturation, in Neonatal Piglets

    No full text
    Background: Multiple studies have indicated that formula-fed infants show a different growth trajectory compared with breastfed infants. The observed growth rates are suggested to be linked to higher postprandial levels of branched chain amino acids (BCAAs) and insulin related to differences in protein quality. Objective: We evaluated the effects of milk protein denaturation and milk protein composition on postprandial plasma and hormone concentrations. Methods: Neonatal piglets were bolus-fed randomly, in an incomplete crossover design, 2 of 3 milk protein solutions: Native whey protein isolate (NWPI), denatured whey protein isolate (DWPI), or protein base ingredient, comprising whey and casein (PBI). Postprandial plasma amino acids (AAs), insulin, glucagon-like peptide 1, glucose, and paracetamol concentrations were assayed. Plasma responses were fitted with a model of first-order absorption with linear elimination. Results: DWPI (91% denatured protein) compared with NWPI (91% native protein) showed lower essential amino acids (EAAs) (∼10%) and BCAA (13-19%) concentrations in the first 30-60 min. However, total amino acid (TAA) concentration per time-point and area under the curve (AUC), as well as EAA and BCAA AUC were not different. PBI induced a ∼30% lower postprandial insulin spike than NWPI, yet plasma TAA concentration at several time-points and AUC was higher in PBI than in NWPI. The TAA rate constant for absorption (ka) was twofold higher in PBI than in NWPI. Plasma BCAA levels from 60 to 180 min and AUC were higher in PBI than in NWPI. Plasma EAA concentrations and AUCs in PBI and NWPI were not different. Conclusions: Denaturation of WPI had a minimal effect on postprandial plasma AA concentration. The differences between PBI and NWPI were partly explained by the difference in AA composition, but more likely differences in protein digestion and absorption kinetics. We conclude that modifying protein composition, but not denaturation, of milk protein solutions impacts the postprandial amino acid availability in neonatal piglets.</p

    A systematic review of the effects of increasing arachidonic acid intake on PUFA status, metabolism and health-related outcomes in humans

    No full text
    We conducted a systematic review of randomised controlled trials (RCT) of increased intake of arachidonic acid (ARA) on fatty acid status and health outcomes in humans. We identified twenty-two articles from fourteen RCT. Most studies were conducted in adults. These used between 80 and 2000 mg ARA per d and were of 1–12 weeks duration. Supplementation with ARA doses as low as 80 mg/d increased the content of ARA in different blood fractions. Overall there seem to be few marked benefits for adults of increasing ARA intake from the typical usual intake of 100–200 mg/d to as much as 1000 mg/d; the few studies using higher doses (1500 or 2000 mg/d) also report little benefit. However, there may be an impact of ARA on cognitive and muscle function which could be particularly relevant in the ageing population. The studies reviewed here suggest no adverse effects in adults of increased ARA intake up to at least 1000–1500 mg/d on blood lipids, platelet aggregation and blood clotting, immune function, inflammation or urinary excretion of ARA metabolites. However, in many areas there are insufficient studies to make firm conclusions, and higher intakes of ARA are deserving of further study. Based on the RCT reviewed, there are not enough data to make any recommendations for specific health effects of ARA intake

    Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood

    No full text
    BACKGROUND: In addition to contemporary lifestyle factors that contribute to the increased obesity prevalence worldwide, early nutrition is associated with sustained effects on later life obesity. We hypothesized that physical properties of dietary lipids contribute to this nutritional programming. We developed a concept infant formula (IMF) with large, phospholipidcoated lipid droplets (Nuturis; Danone Research, Paris, France) and investigated its programming effect on metabolic phenotype later in life. METHODS: Male C57BI/6j mice were fed a control formula (Control IMF) or Nuturis (Concept IMF) diet between postnatal day (PN)16 and PN42. All mice were subsequently fed a Western-style diet (WSD) until PN126. Body composition was monitored repeatedly by dual-energy X-ray absorptiometry between PN42 and PN126. RESULTS: Concept IMF slightly increased lean body mass as compared with Control IMF at PN42 but did not affect fat mass. Upon 84 d of WSD feeding, the Concept IMF group showed reduced fat accumulation as compared with Control IMF. In addition, fasting plasma leptin, resistin, glucose, and lipids were significantly lower in the Concept IMF group. CONCLUSION: Large phospholipid-coated lipid droplets in young mice reduced fat accumulation and improved metabolic profile in adulthood. These data emphasize that physical properties of early dietary lipids contribute to metabolic programming
    corecore