20 research outputs found

    Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    Get PDF
    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited

    Abnormal Platelet Counts and Clonal Hematopoiesis in the General Population

    No full text
    Clonal hematopoiesis (CH) is defined by the presence of somatic mutations that may cause clonal expansion of hematopoietic cells. Here, we investigated the association between platelet count abnormalities, CH and consequences on overall survival and the development of hematological malignancies. Individuals with thrombocytopenia (n = 631) or thrombocytosis (n = 178) ≥60 years, and their age- and sex-matched controls, were selected within the population-based Lifelines cohort (n = 167,729). Although the prevalence of CH was not increased in thrombocytopenia cases compared with their controls (37.9% vs 39.3%; P = 0.639), mutations in spliceosome genes (SF3B1, SRSF2, U2AF1) were significantly enriched in thrombocytopenia cases (P = 0.007). Overall, CH in combination with thrombocytopenia did not impact on survival, but thrombocytopenia in combination with multiple mutated genes (hazard ratio [HR] = 2.08, 95% confidence interval [CI], 1.24-3.50; P = 0.006), mutations in TP53 (HR = 5.83, 95% CI, 2.49-13.64; P < 0.001) or spliceosome genes (HR = 2.69, 95% CI, 1.29-5.63; P = 0.009) increased the risk of death. The prevalence of CH in thrombocytosis cases was higher compared with controls (55.8% vs 37.7%; P < 0.001). Especially mutations in JAK2 (P < 0.001) and CALR (P = 0.003) were enriched in individuals with thrombocytosis. The presence of CH in individuals with thrombocytosis did not impact on overall survival. However, during follow-up of 11 years 23% of the individuals with thrombocytosis and CH were diagnosed with hematological malignancies. From these, 81% were diagnosed with myeloproliferative disease and 76% carried driver mutations JAK2, CALR, or MPL

    Abnormal Platelet Counts and Clonal Hematopoiesis in the General Population

    Get PDF
    Clonal hematopoiesis (CH) is defined by the presence of somatic mutations that may cause clonal expansion of hematopoietic cells. Here, we investigated the association between platelet count abnormalities, CH and consequences on overall survival and the development of hematological malignancies. Individuals with thrombocytopenia (n = 631) or thrombocytosis (n = 178) ≥60 years, and their age- and sex-matched controls, were selected within the population-based Lifelines cohort (n = 167,729). Although the prevalence of CH was not increased in thrombocytopenia cases compared with their controls (37.9% vs 39.3%; P = 0.639), mutations in spliceosome genes (SF3B1, SRSF2, U2AF1) were significantly enriched in thrombocytopenia cases (P = 0.007). Overall, CH in combination with thrombocytopenia did not impact on survival, but thrombocytopenia in combination with multiple mutated genes (hazard ratio [HR] = 2.08, 95% confidence interval [CI], 1.24-3.50; P = 0.006), mutations in TP53 (HR = 5.83, 95% CI, 2.49-13.64; P < 0.001) or spliceosome genes (HR = 2.69, 95% CI, 1.29-5.63; P = 0.009) increased the risk of death. The prevalence of CH in thrombocytosis cases was higher compared with controls (55.8% vs 37.7%; P < 0.001). Especially mutations in JAK2 (P < 0.001) and CALR (P = 0.003) were enriched in individuals with thrombocytosis. The presence of CH in individuals with thrombocytosis did not impact on overall survival. However, during follow-up of 11 years 23% of the individuals with thrombocytosis and CH were diagnosed with hematological malignancies. From these, 81% were diagnosed with myeloproliferative disease and 76% carried driver mutations JAK2, CALR, or MPL

    CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1

    No full text
    Abstract The inv(16) acute myeloid leukemia-associated CBFβ-MYH11 fusion is proposed to block normal myeloid differentiation, but whether this subtype of leukemia cells is poised for a unique cell lineage remains unclear. Here, we surveyed the functional consequences of CBFβ-MYH11 in primary inv(16) patient blasts, upon expression during hematopoietic differentiation in vitro and upon knockdown in cell lines by multi-omics profiling. Our results reveal that primary inv(16) AML cells share common transcriptomic signatures and epigenetic determiners with megakaryocytes and erythrocytes. Using in vitro differentiation systems, we reveal that CBFβ-MYH11 knockdown interferes with normal megakaryocyte maturation. Two pivotal regulators, GATA2 and KLF1, are identified to complementally occupy RUNX1-binding sites upon fusion protein knockdown, and overexpression of GATA2 partly induces a gene program involved in megakaryocyte-directed differentiation. Together, our findings suggest that in inv(16) leukemia, the CBFβ-MYH11 fusion inhibits primed megakaryopoiesis by attenuating expression of GATA2/KLF1 and interfering with a balanced transcriptional program involving these two factors
    corecore