233 research outputs found
Implementation of a quantum algorithm to solve Bernstein-Vazirani's parity problem without entanglement on an ensemble quantum computer
Bernstein and Varizani have given the first quantum algorithm to solve parity
problem in which a strong violation of the classical imformation theoritic
bound comes about. In this paper, we refine this algorithm with fewer resource
and implement a two qubits algorithm in a single query on an ensemble quantum
computer for the first time
Nonlinear Integer Programming
Research efforts of the past fifty years have led to a development of linear
integer programming as a mature discipline of mathematical optimization. Such a
level of maturity has not been reached when one considers nonlinear systems
subject to integrality requirements for the variables. This chapter is
dedicated to this topic.
The primary goal is a study of a simple version of general nonlinear integer
problems, where all constraints are still linear. Our focus is on the
computational complexity of the problem, which varies significantly with the
type of nonlinear objective function in combination with the underlying
combinatorial structure. Numerous boundary cases of complexity emerge, which
sometimes surprisingly lead even to polynomial time algorithms.
We also cover recent successful approaches for more general classes of
problems. Though no positive theoretical efficiency results are available, nor
are they likely to ever be available, these seem to be the currently most
successful and interesting approaches for solving practical problems.
It is our belief that the study of algorithms motivated by theoretical
considerations and those motivated by our desire to solve practical instances
should and do inform one another. So it is with this viewpoint that we present
the subject, and it is in this direction that we hope to spark further
research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G.
Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50
Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art
Surveys, Springer-Verlag, 2009, ISBN 354068274
Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study
Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol
Tracking Official Development Assistance for Reproductive Health in Conflict-Affected Countries
Preeti Patel and colleagues report inequity in the disbursement of official development assistance for reproductive health between countries affected by conflict and those unaffected
A Critical Role of a Cellular Membrane Traffic Protein in Poliovirus RNA Replication
Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA), implicating some components(s) of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA
Effects of Dietary Restriction on Cancer Development and Progression
The effects of caloric restriction on tumor growth and progression are known for
over a century. Indeed, fasting has been practiced for millennia, but just recently
has emerged the protective role that it may exert toward cells. Fasting cycles are
able to reprogram the cellular metabolism, by inducing protection against oxidative
stress and prolonging cellular longevity. The reduction of calorie intake as
well as short- or long-term fasting has been shown to protect against chronic and
degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer.
In vitro and in vivo preclinical models showed that different restriction dietary
regimens may be effective against cancer onset and progression, by enhancing
therapy response and reducing its toxic side effects. Fasting-mediated beneficial
effects seem to be due to the reduction of inflammatory response and downregulation
of nutrient-related signaling pathways able to modulate cell proliferation
and apoptosis. In this chapter, we will discuss the most significant studies
present in literature regarding the molecular mechanisms by which dietary
restriction may contribute to prevent cancer onset, reduce its progression, and
positively affect the response to the treatments
G-protein signaling: back to the future
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways
GoLoco motif proteins binding to Gαi1: insights from molecular simulations
Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the Gαi1/GoLoco peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the Gαi1 subunit was found to restrict the relative movement of the helical and catalytic domains in the Gαi1 subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of Gα, the conformation of which might be important for interactions with various Gα partners
- …