96 research outputs found
Recommended from our members
CARBON NANOMATERIALS AS CATALYSTS FOR HYDROGEN UPTAKE AND RELEASE IN NAALH4
A synergistic approach involving experiment and first-principles theory not only shows that carbon nanostructures can be used as catalysts for hydrogen uptake and release in complex metal hydrides such as sodium alanate, NaAlH{sub 4}, but also provides an unambiguous understanding of how the catalysts work. The stability of NaAlH{sub 4} originates from the charge transfer from Na to the AlH{sub 4} moiety, resulting in an ionic bond between Na{sup +} and AlH{sub 4}{sup -} and a covalent bond between Al and H. Interaction of NaAlH{sub 4} with an electro-negative substrate such as carbon fullerene or nanotube affects the ability of Na to donate its charge to AlH{sub 4}, consequently weakening the Al-H bond and causing hydrogen to desorb at lower temperatures as well as facilitating the absorption of H{sub 2} to reverse the dehydrogenation reaction. Ab initio molecular dynamics simulation further reveals the time evolution of the charge transfer process with hydrogen desorption occurring when the charge transfer is complete
Recommended from our members
INVESTIGATION OF THE THERMODYNAMICS GOVERNING METAL HYDRIDE SYNTHESIS IN THE MOLTEN STATE PROCESS.
Complex metal hydrides have been synthesized for hydrogen storage through a new synthetic technique utilizing high hydrogen overpressure at elevated temperatures (molten state processing). This synthesis technique holds the potential of fusing different complex hydrides at elevated temperatures and pressures to form new species with enhanced hydrogen storage properties. Formation of these compounds is driven by thermodynamic and kinetic considerations. We report on investigations of the thermodynamics. Novel synthetic complexes were formed, structurally characterized, and their hydrogen desorption properties investigated. The effectiveness of the molten state process is compared with mechanicosynthetic ball milling
Recommended from our members
HIGH TEMPERATURE PRESSURE PROCESSING OF MIXED ALANATE COMPOUNDS
Mixtures of light-weight elements and hydrides were investigated to increase the understanding of the chemical reactions that take place between various materials. This report details investigations we have made into mixtures that include NaAlH{sub 4}, LiAlH{sub 4}, MgH{sub 2}, Mg{sub 2}NiH{sub 4}, alkali(ne) hydrides, and early third row transition metals (V, Cr, Mn). Experimental parameters such as stoichiometry, heat from ball milling versus hand milling, and varying the temperature of high pressure molten state processing were studied to examine the effects of these parameters on the reactions of the complex metal hydrides
Hall Anomaly and Vortex-Lattice Melting in Superconducting Single Crystal YBa2Cu3O7-d
Sub-nanovolt resolution longitudinal and Hall voltages are measured in an
ultra pure YBa2Cu3O7-d single crystal. The Hall anomaly and the first-order
vortex-lattice melting transition are observed simultaneously. Changes in the
dynamic behavior of the vortex solid and liquid are correlated with features of
the Hall conductivity sxy. With the magnetic field oriented at an angle from
the twin-boundaries, the Hall conductivity sharply decreases toward large
negative values at the vortex-lattice melting transition.Comment: 6 pages, 2 figures included, Postscript, to appear in Phys. Rev. Let
Structural and optical characterization of InP/InGaAsP distributed Bragg reflectors grown by CBE
High quality InP/InGaAsP Distributed Bragg Reflectors (DBRs) are a key element in Vertical Cavity Surface Emitting Laser (VCSELs) for long wavelength (1.55 mu m) applications [1-3]. Because of the small index difference between InP and InGaAsP, more than 30 periods are needed to obtain reflectivities above 99 %, which makes it a challenge for the crystal growth technique. In this paper we present the structural and optical characteristics of such DBRs grown by Chemical Beam Epitaxy (CBE) at high growth rates that comply with the requirements for the integration in long wavelength VCSELs
- âŠ