This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-96SR18500 with the U.S. Department of Energy.

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U. S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or 2. representation that such use or results of such use would not infringe privately owned rights; or 3. endorsement or recommendation of any specifically identified commercial product, process, or service. Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

High Temperature-Pressure Processing of Mixed Alanate Compounds

P. Berseth, J. Pittman, K. Shanahan, A. Stowe, D. Anton, R. Zidan

Abstract

Mixtures of light-weight elements and hydrides were investigated to increase the understanding of the chemical reactions that take place between various materials. This report details investigations we have made into mixtures that include NaAlH₄, LiAlH₄, MgH₂, Mg₂NiH₄, alkali(ne) hydrides, and early third row transition metals (V, Cr, Mn). Experimental parameters such as stoichiometry, heat from ball milling versus hand milling, and varying the temperature of high pressure molten state processing were studied to examine the effects of these parameters on the reactions of the complex metal hydrides.

Keywords: A. alloys, A. intermetallic compounds, B. chemical synthesis, C. X-ray diffraction.

1. Introduction

Solid state materials which store hydrogen with high gravimetric and volumetric densities are needed to develop a hydrogen economy for transportation applications. To this end, hydrogen containing solids of the light-weight elements are under intensive investigation.[1-6] Desirable materials properties include a high weight percent hydrogen (ideally $9 \ge wt\%$), rapid release and uptake of H₂ at pressures of 100 atm or less, and operation at fuel cell compatible temperatures (T ≤160 °C). This combination of properties is challenging to achieve in one material, and while there are a variety of materials that exhibit one or more of these properties, no material to date meets all of the criteria. For instance, magnesium is abundant, relatively inexpensive, and MgH₂ has a large weight percent hydrogen (7.9 %) but the temperature for hydrogen evolution is about 300 °C, and the kinetics of hydrogen at acceptable temperatures, but the kinetics are slow and the weight percent is mediocre (5.6 %).[8-10] One method of tailoring

properties is to combine two or more materials to create a new material with intermediate properties. One interesting example of this is Mg₂NiH₄, where the mixed metal hydride has a lower dehydrogenation temperature (~250 °C vs 300 °C for MgH₂) and better kinetics of hydrogenation. Researchers have investigated the effect of combining Mg₂NiH₄ with a variety of materials, e.g. transition metal oxides, Pd, and excess MgH₂, in order to improve properties.[11]

Even with the constraint of focusing on the light-weight elements, there is a wide variety of mixtures to be investigated with the goals of understanding the chemical reactions that take place between various materials, and possibly creating a new material with improved properties. This report details investigations we have made into mixtures that include NaAlH₄, LiAlH₄, MgH₂, Mg₂NiH₄, alkali(ne) hydrides, and early third row transition metals (V, Cr, Mn), where V is used in the hydrided form to compare the effect of transition metal hydride vs. bare transition metal.

2. Experimental

Mixtures were made by dry mixing in a Spex 8000 ball mill. The vial volume is 65 mL, and two 12.7 mm and four 6.4 mm balls was used for mixing. Mixture components and balls were loaded into ball mill vials under an inert atmosphere (Argon gas). Samples were typically milled for 60 minutes. Cold ball milling was performed by chilling the vial on dry ice for 5-10 minutes, then ball milling in 10 minute increments with chilling of the vial between each milling cycle. Hand milling was performed with an agate mortar and pestle under Argon atmosphere. X-ray diffraction (XRD) samples were pressed onto quartz plates, and sealed with a thin film of polyethylene under Argon atmosphere, then transferred to the diffractometer for analysis using Cu K_{α} radiation.

Molten state processing (MSP), an SRNL patented technique, was used to heat ball milled mixtures under high hydrogen gas pressure (usually 4500 psi) in order to synthesize possible new phases.[12, 13] The premise is that the high H₂ pressure will favor the formation of products with high hydrogen content, following Le Châtelier's principle. Vanadium forms hydrides rather easily, so vanadium powder was heated under vacuum/hydrogen cycles to create VH_{0.81} for use in these experiments.[14]

3. Results and Discussion

Table 1 provides a comprehensive list of the various mixtures that were investigated in this study. The mixtures we have explored include NaAlH₄, LiAlH₄, MgH₂ and Mg₂NiH₄ as the primary materials, with addition of alkali(ne) hydrides, and/or early third row transition metals (V, Cr, Mn) and occasionally TiCl₃. The metals Cr and Mn were chosen because they do not easily form hydrides under the conditions of our experiment, so the effect of a transition metal in "metal" form could be examined. Vanadium, immediately to the left of Cr on the periodic table, does form a hydride so VH_{0.81} was used to explore the difference in chemical reactions of a transition metal versus a transition metal hydride additive. Experimental parameters such as stoichiometry, temperature of ball milling, use of hand milling, and temperature of MSP were varied to study the effects of these parameters on the products. Starting materials are abbreviated SM for brevity in the table, and this indicates that all of the starting materials are seen in the XRD pattern of the indicated reaction step.

3a. Mixtures of alanates and transition metals:

Mixtures with Cr metal:

The quaternary mixture, which has NaAlH₄, LiAlH₄, and MgH₂ mixed with Cr was first investigated with a simple 1:1:1:1 mixture. This treatment produced starting materials and aluminum. Based on the fact that the binary mixture of LiAlH₄ and various transition metals yields aluminum and starting materials, we conclude that some of the LiAlH₄ has decomposed with ball milling, which is known to occur.[15] The decomposition reaction is expected to take place as shown below in equation 1.

$$3LiAlH_4 \rightarrow Li_3AlH_6 + 2Al + 3H_2 \tag{1}$$

Note that only the Al product is seen in the XRD pattern, any Li₃AlH₆ produced does not show up in the XRD pattern, which is not uncommon as many of the expected Li containing species are not seen in XRD patterns of the products in this study. There are several possible reasons for the lack of XRD signal, including x-ray absorption by heavier elements, formation of nanoparticles, or formation of an amorphous phase.

When the mixture is further reacted with MSP conditions at 170 °C, the reaction yields mixed metal products as follows (XRD scans are qualitative, not quantitative, so this is not a balanced reaction equation, rather it is a list of products formed):

$$LiAlH_4 + NaAlH_4 + MgH_2 + Cr + Al \rightarrow (MSP, 170 \text{ }^{\circ}C) \rightarrow$$

$$LiNa_2AIH_6 + NaMgH_3 + NaH + AI + MgH_2 + Cr$$
(2)

One can make assumptions about the reactions that took place to form this mix of products.

$$LiAlH_4 + 2NaAlH_4 \rightarrow Na_2LiAlH_6 + 2Al + 3H_2$$
(3)

$$NaAlH_4 + MgH_2 \rightarrow NaMgH_3 + Al + 3/2H_2$$
(4)

The product mixture contains NaH as well, which likely comes from the partial decomposition of Na₂LiAlH₆, as shown in reaction 5 below.

$$Na_2LiAlH_6 \rightarrow 2NaH + LiH + Al + 3/2H_2$$
(5)

No evidence of LiH is seen in the XRD pattern, though it is likely present unless the NaH is formed from the decomposition of a possible Na_3AlH_6 reaction intermediate. The NaH product is seen with quaternary mixtures containing Cr or Mn, which indicates that transition metals, when employed as metals, assist the partial decomposition of the alanates. When $VH_{0.81}$ is used as the quaternary element, the NaH is not seen. Additionally, with the $VH_{0.81}$ reactant, $LiAlH_4$ remains in the product mixture, while it does not for either Cr or Mn. This suggests that the $VH_{0.81}$ is not catalyzing the decomposition of the alanates relative to the Cr and Mn reactants, which are in the elemental state. The XRD patterns of the MSP product for mixtures containing Cr and $VH_{0.81}$ are shown in Figures 1 and 2. The XRD patterns do not show evidence of LiH formation, but because the Li containing products, especially in small quantities, are apt not to show up in XRD, the possibility that LiH is also present is not ruled out as the scattering from LiH is relatively weak compared to the other components of the sample.

These Cr mixtures were explored further by varying the ratio of starting materials away from the simple 1:1:1:1 mixtures that had been explored for the other transition metals. The Cr and the MgH₂ mol ratios were varied to see if this would change the reaction. When the Cr content was doubled, regardless of the MgH₂ content, ball milling formed starting materials and Al. When the mol ratio of Cr is increased to 4, ball milling alone causes the LiAlH₄ to fully decompose to Li₃AlH₆. This is a confirmation that the presence of excess Cr catalyzes the decomposition of LiAlH₄, which is expected from a transition metal.

The temperature of ball milling is another experimental parameter that was varied. A typical 60 minute ball milling reaction creates enough heat to warm the vials to approximately 60 °C. In order to separate the effect of mechanical mixing from the effect of heating the mixture during mixing, the 1:1:1:1 Cr mixture was ball milled "cold" by cooling the vial every 10 minutes for a total of 60 minutes of milling; the vials did not exceed room temperature with this method. The cold ball milling prevented the decomposition of LiAlH₄ and only the starting materials were seen in the XRD pattern, where regular ball milling shows an XRD pattern with starting material and aluminum. The cold ball milled mixture, and the regular ball milled mixture, were further reacted under MSP conditions at a low temperature of 60 °C (usually done at 170 °C or higher). The low temperature MSP yields SM, Al, and Li₃AlH₆ regardless of ball milling conditions. Note that in this case the Li_3AlH_6 is present in the XRD pattern. The Al peak is much more intense after the MSP step versus after the ball milling step, so presumably the 3 hour heating provides energy for crystallization of the products allowing Li₃AlH₆ to be seen, and/or the quantity of products has increased with heat, to a level of Li₃AlH₆ detectable by XRD.

Mixtures with Mn metal:

The quaternary mixture of both alanates, MgH_2 and Mn is interesting in that it yields $MnH_{0.07}$ with just ball milling, in addition to the non-Mn starting materials and Al. The H is assumed to originate with LiAlH₄ that decomposes with ball milling. When this mixture is heated for MSP, the $MnH_{0.07}$ decomposes leaving Mn, in addition to MgH_2 , Al, Na₂LiAlH₆, NaMgH₃, and NaH.

*Mixtures with VH*_{0.81}:

The quaternary mixture of NaAlH₄:LiAlH₄:MgH₂:VH_{0.81} 1:1:1:1 forms starting materials and Al with ball milling. The MSP reaction of this mixture at 170 °C results in the formation of starting materials LiAlH₄, MgH₂ and VH_{0.81} in addition to Al, Na₂LiAlH₆ and NaMgH₃.

There is clearly a difference in behavior between the Mn and Cr metal samples, and the $VH_{0.81}$ hydride samples. We see that the transition metals assist in the partial decomposition of the alanates.

3b. Mixtures of alanates and Mg₂NiH₄:

The mixed metal hydride Mg₂NiH₄ contains the transition metal Ni, which assists in the decomposition of this material relative to MgH₂, much as the transition metals assist in the decomposition of the alanates. The Mg₂NiH₄ was ball milled with 1)LiAlH₄, 2)NaAlH₄, and 3)NaAlH₄ with 4 mol% TiCl₃ to explore the affect of the Ni component on the alanate materials. The mixture with LiAlH₄ results in the starting Mg compound completely decomposing with ball milling to form 4 products: MgH₂, Mg₂NiH, and Mg₂NiH_{0.3} and Al_{1.1}Ni_{0.9}. Apparently the Mg₂NiH₄ has partially disproportionated to MgH₂ and Ni, and presumably the Ni has catalyzed the decomposition of LiAlH₄ resulting in LiH and Al formation, where the Ni and Al go on to form the Al_{1.1}Ni_{0.9} alloy.

The ball milled mixture with NaAlH₄ has only one product in common with the LiAlH₄ mixture, and that is Mg₂NiH_{0.3}. There are also starting materials present after ball milling, as well as the previously known mixed metal NaMgH₃. When 4 mol% TiCl₃ is added in addition to NaAlH₄, Mg₂NiH_{0.26} is formed along with NaMgH₃ and Al, and starting materials remain. A likely reaction path is that Ti catalyzes the dehydrogenation of NaAlH₄ in the ball mill vial, and the NaH formed reacts with MgH₂ to form the

NaMgH₃. If the mixture with TiCl₃ is hand ground in a mortar and pestle (much lower energy than a ball mill) the mixed metal hydride NaMgH₃ does not form, which suggests that the energy and/or heat associated with ball milling is required for this reaction to take place.

3c. Mixtures of LiAlH₄ and binary hydrides:

Mixtures of LiAlH₄, 4 mol% Ti, and the binary hydrides 1) KH, 2) MgH₂ and 3) CaH₂ were investigated. Ball milling the mixture with KH produced two ion exchange compounds, KAlH₄ and K₃AlH₆, and left unreacted LiAlH₄ which continued the ion exchange with MSP. Ball milling with MgH₂ causes the LiAlH₄ to completely decompose to form Li₃AlH₆ which is a good indicator that the MgH₂ has a catalytic effect on LiAlH₄ decomposition. The combination containing CaH₂ produced starting materials, Li₃AlH₆, and Al with ball milling, indicating that the LiAlH₄ partially decomposes while the CaH₂ does not react. When heated with MSP, this mixture forms CaH₂, Al, LiCl and LiH, which are expected products from the decomposition of LiAlH₄ and reaction of the chloride from TiCl₃ with Li decomposition products.

3d. Mixtures of Mg₂NiH₄ and binary hydrides:

The mixed metal compound Mg_2NiH_4 was ball milled with 1)LiH and 2)NaH. In both cases, the mixtures yielded starting materials, MgH_2 , and $Mg_2NiH_{2.6}$, and in the case of LiH, some Mg was present as well.

4. Conclusion

A wide variety of hydride mixtures, with and without light transition metal additives, were investigated. This work provides insight into the chemical reactions that take place between four hydride materials that are possible contenders for transportation

applications, if the systems can be fine tuned to overcome temperature, kinetic or weight percent limitations.

The addition of transition metal elements to NaAlH₄ does not create mixed metal alanates - no reaction is seen with ball milling, and MSP generally produces a decomposition product, Na₃AlH₆. However, the addition of elements or other hydrides destabilizes LiAlH₄ – with the elements Al is seen in the XRD pattern, while mixtures with binary hydrides produce the hexahydride, Li₃AlH₆ (or K₃AlH₆ in the case of KH).

NaAlH₄ in combination with Mg materials often produces NaMgH₃. When the Mg compound used is Mg₂NiH₄, NaMgH₃ forms with just ball milling. Mixtures with MgH₂ do not form the mixed metal hydride unless heated above 60 °C in the MSP step. Two explanations for this are likely, first that the presence of Ni catalyzes the decomposition of NaAlH₄, and second that Mg₂NiH₄ is less kinetically stable, and therefore more reactive, than MgH₂. The temperature effect is seen in the hexahydride product as well, but for a different reason. Mixtures containing LiAlH₄ and NaAlH₄ form mixed metal Na₂LiAlH₆ with MSP of 170 °C or higher, while Li₃AlH₆ is formed with MSP at 60 °C rather than the mixed metal product. The difference in products is likely due to the fact that solid state diffusion is relatively slow and LiAlH₄ melts at 125 °C so the higher temperature reactions have one molten component, greatly aiding diffusion.

Quaternary mixtures lead to known mixed metal products Na_2LiAlH_6 and $NaMgH_3$. When the transition metal additive is Cr or Mn, no residual LiAlH₄ reactant remains but residual MgH₂ does, while the transition metal additive VH_{0.81} leaves LiAlH₄ reactant remaining in the product mixture. This indicates that the limiting NaAlH₄

reagent preferentially reacts with LiAlH₄ in the presence of Cr and Mn, which are active

transition metal catalysts, relative to VH_{0.81}.

5. Acknowledgement

We would like to acknowledge the assistance and helpful discussions of Art Jurgensen in

the matter of XRD data collection and interpretation and of Martin Scott for laboratory

support. Funding was provided by DOE contract # EB4202000.

References

- 1. Tang, X., et al., *Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides*. Journal of Alloys and Compounds. In Press, Corrected Proof: p. 366.
- 2. Fakioglu, E., Y. Yurum, and T. Nejat Veziroglu, *A review of hydrogen storage* systems based on boron and its compounds. International Journal of Hydrogen Energy, 2004. 29(13): p. 1371-1376.
- 3. Chandra, D.R., James J.; Chellappa, Raja, *Metal Hydrides for Vehicular Applications: The State of the Art.* Journal of the Minerals, Metals & Materials Society, 2006. 58(2): p. 26-32.
- 4. Vajo, J.J., S.L. Skeith, and F. Mertens, *Reversible Storage of Hydrogen in Destabilized LiBH4*. J. Phys. Chem. B, 2005. 109(9): p. 3719-3722.
- 5. Orimo, S., et al., *Dehydriding and rehydriding reactions of LiBH4*. Journal of Alloys and Compounds, 2005. 404-406: p. 427-430.
- 6. Ritter, J.A., et al., *Implementing a hydrogen economy*. Materials Today, 2003. 6(9): p. 18-23.
- 7. de Rango, P., et al., *Nanostructured magnesium hydride for pilot tank development*. Journal of Alloys and Compounds. In Press, Corrected Proof.
- 8. Wang, J., et al., Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride. Journal of Alloys and Compounds, 2005. 391(1-2): p. 245-255.
- 9. Anton, D.L., *Hydrogen desorption kinetics in transition metal modified NaAlH4.* Journal of Alloys and Compounds, 2003. 356-357: p. 400-404.
- 10. Fichtner, M., et al., *Nanocrystalline alanates--Phase transformations, and catalysts.* Journal of Alloys and Compounds, 2005. 404-406: p. 732-737.
- 11. Sakintuna, B., F. Lamari-Darkrim, and M. Hirscher, *Metal hydride materials for solid hydrogen storage: A review*. International Journal of Hydrogen Energy, 2007. 32(9): p. 1121-1140.
- 12. Zidan, R., *Complex hydrides for hydrogen storage*, USPO, Editor. 2003, Washington Savannah River Company LLC: United States.
- 13. Zidan, R.S., K.; Anton, D.; Jurgensen, A.; Pittman, J. Development and Characterization of Novel Complex Hydrides- Synthesized via Molten State

Processing. in *Material Research Society, Fall 2005*. 2005. Boston: Materials Research Society.

- 14. Golubkov, A.N. and A.A. Yukhimchuk, *Synthesis of the dihydride phase of vanadium*. Journal of Alloys and Compounds, 2005. 404-406: p. 35-37.
- 15. Balema, V.P., et al., *Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling*. Journal of Alloys and Compounds, 2001. 329(1-2): p. 108-114.

			MSP cond		
Compounds	mol ratios	prep cond	(°C-psi H ₂ - time)	BM Results	MSP Results
Compoundo	Tutiou	propoond		Biii ricodailo	NaAlH4, Cr. Naal iAlHe
NaAlH₄:LiAlH₄:Cr	1:1:1	Spex BM 60 min	170-4500-2h	SM + AI	Al. NaH
					Mn. Na₂LiAlH₀, Al. NaH
NaAlH₄:LiAlH₄:Mn	1:1:1	Spex BM 60 min	190-4500-2h	SM + AI	
					Mn, Na ₂ LiAlH ₆ , Al, NaH
NaAlH₄:LiAlH₄:Mn	1:1:1	Spex BM 60 min	170-4500-2h	SM + AI	
					LiAIH ₄ :MgH ₂ :VH _{0.81} , AI,
NaAlH4:LiAlH4:MgH2:VH0.81	1:1:1:1	Spex BM 60 min	170-4500-2h	SM + AI	Na₂LiAlH₀, NaMgH₃
					MgH ₂ , Cr, Al, Na ₂ LiAlH ₆ ,
NaAlH ₄ :LiAlH ₄ :MgH ₂ :Cr	1:1:1:1	Spex BM 60 min	170-4500-2h	SM + AI	NaMgH₃, NaH
NaAlH ₄ :LiAlH ₄ :MgH ₂ :Cr	1:1:1:1	Spex BM 60 min	60-4500-3h	SM + AI	SM + AI, Li₃AIH ₆
NaAlH ₄ :LiAlH ₄ :MgH ₂ :Cr	1:1:1:1	cold ball mill	60-4500-3h	SM	SM + AI, Li ₃ AIH ₆
NaAlH4:LiAlH4:MgH2:Cr	1:1:1:2	Spex BM 60 min		SM + AI	
				NaAlH ₄ , MgH ₂ , Cr,	_
NaAlH ₄ :LiAlH ₄ :MgH ₂ :Cr	1:1:1:4	Spex BM 60 min		AI, Li ₃ AIH ₆	
NaAlH4:LiAlH4:MgH2:Cr	1:1:2:2	Spex BM 60 min		SM + AI	
NaAlH ₄ :LiAlH ₄ :MgH ₂ :Cr	1:1:2:1	Spex BM 60 min		SM + AI	
				NaAlH ₄ :LiAlH ₄ :MgH ₂	MgH ₂ , Mn, Na ₂ LiAlH ₆ ,
NaAlH ₄ :LiAlH ₄ :MgH ₂ :Mn	1:1:1:1	Spex BM 60 min	170-4500-2h	MnH _{0.07} , Al	NaMgH₃, Al, NaH
NaAlH ₄ :VH _{0.81}	1:1	Spex BM 60 min		n/a - outgasses	
NaAlH₄:Cr	1:1	Spex BM 60 min	190-4500-2h	SM	SM, Na₃AlH ₆
NaAlH₄:Mn	1:1	Spex BM 60 min	190-4500-2h	SM	SM, Na ₃ AlH ₆
LiAIH ₄ :Cr	1:1	Spex BM 60 min	170-4500-2h	SM + AI	SM + AI, L _{i3} AIH ₆
LiAlH ₄ :Mn	1:1	Spex BM 60 min	170-4500-2h	SM + Al	Mn, Al
				LiAIH ₄ , KAIH ₄ ,	_
LiAlH ₄ :KH:TiCl ₃	1:2:.04	BM 40 min		K ₃ AIH ₆	LiAIH ₄ , KAIH ₄ , K ₃ AIH ₆ , KCI,
				MgH ₂ , Li ₃ AlH ₆ ,	_
LiAlH ₄ :MgH ₂ :TiCl ₃	1:1:.04	BM 40 min		Al, LiCl, Mg	MgH ₂ , Al, LiCl
LiAlH ₄ :CaH ₂ :TiCl ₃	1:1:.04	BM 40 min		SM, Li₃AlH ₆ , Al	CaH ₂ , AI, LiCI, LiH
				MgH ₂ , Mg ₂ NiH,	_
LIAIH ₄ :Mg ₂ NIH ₄	1:1			Mg ₂ NiH _{0.3} , Al _{1.1} Ni _{0.8}	
				SM, NaMgH ₃ ,	_
NaAlH ₄ :Mg ₂ NiH ₄	1:1			Mg ₂ NiH _{0.3}	
				SM, MgH ₂ ,	_
NaAIH4:Mg2NIH4:TIC13	1:1:.04	mortar pestle		Mg ₂ NiH _{0.3}	
	4.4.04	DM 40 min		SM, AI, NAMgH ₃ ,	-
	1:1:.04			Mg ₂ NIH _{0.26}	
Ma Nill Noll	1.1.0	mortor peetle		CM Mall Ma Nill	
	1:1.2			SIVI, IVIGH2, IVIG2INIH.26	
IVIG2INIH4:LIH	1:9.9	BIVI 40 MIN		SNI , $NIGH_2$, $MIG_2NIH_{.26}$	

Table 1: Mixtures of materials investigated.

Figure 1: XRD pattern of the 170 °C reaction of the quaternary mixture NaAlH₄:LiAlH₄:MgH₂:Cr

Figure 2: XRD pattern of the 170 °C reaction of the quaternary mixture NaAlH₄:LiAlH₄:MgH₂:VH_{0.81}

