18,413 research outputs found

    Geometric phases and anholonomy for a class of chaotic classical systems

    Full text link
    Berry's phase may be viewed as arising from the parallel transport of a quantal state around a loop in parameter space. In this Letter, the classical limit of this transport is obtained for a particular class of chaotic systems. It is shown that this ``classical parallel transport'' is anholonomic --- transport around a closed curve in parameter space does not bring a point in phase space back to itself --- and is intimately related to the Robbins-Berry classical two-form.Comment: Revtex, 11 pages, no figures

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation

    Observation of a Chiral State in a Microwave Cavity

    Full text link
    A microwave experiment has been realized to measure the phase difference of the oscillating electric field at two points inside the cavity. The technique has been applied to a dissipative resonator which exhibits a singularity -- called exceptional point -- in its eigenvalue and eigenvector spectrum. At the singularity, two modes coalesce with a phase difference of π/2.\pi/2 . We conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure

    Statistical Properties of Many Particle Eigenfunctions

    Full text link
    Wavefunction correlations and density matrices for few or many particles are derived from the properties of semiclassical energy Green functions. Universal features of fixed energy (microcanonical) random wavefunction correlation functions appear which reflect the emergence of the canonical ensemble as the number of particles approaches infinity. This arises through a little known asymptotic limit of Bessel functions. Constraints due to symmetries, boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure

    Nonperiodic Orbit Sums in Weyl's Expansion for Billiards

    Get PDF
    Weyl's expansion for the asymptotic mode density of billiards consists of the area, length, curvature and corner terms. The area term has been associated with the so-called zero-length orbits. Here closed nonperiodic paths corresponding to the length and corner terms are constructed.Comment: 8 pages, 2 figure

    Decimation and Harmonic Inversion of Periodic Orbit Signals

    Full text link
    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.Comment: 22 pages, 3 figures, submitted to J. Phys.

    Deviations from Berry--Robnik Distribution Caused by Spectral Accumulation

    Full text link
    By extending the Berry--Robnik approach for the nearly integrable quantum systems,\cite{[1]} we propose one possible scenario of the energy level spacing distribution that deviates from the Berry--Robnik distribution. The result described in this paper implies that deviations from the Berry--Robnik distribution would arise when energy level components show strong accumulation, and otherwise, the level spacing distribution agrees with the Berry--Robnik distribution.Comment: 4 page

    Berry phase, topology, and diabolicity in quantum nano-magnets

    Full text link
    A topological theory of the diabolical points (degeneracies) of quantum magnets is presented. Diabolical points are characterized by their diabolicity index, for which topological sum rules are derived. The paradox of the the missing diabolical points for Fe8 molecular magnets is clarified. A new method is also developed to provide a simple interpretation, in terms of destructive interferences due to the Berry phase, of the complete set of diabolical points found in biaxial systems such as Fe8.Comment: 4 pages, 3 figure

    The three-body problem and the Hannay angle

    Full text link
    The Hannay angle has been previously studied for a celestial circular restricted three-body system by means of an adiabatic approach. In the present work, three main results are obtained. Firstly, a formal connection between perturbation theory and the Hamiltonian adiabatic approach shows that both lead to the Hannay angle; it is thus emphasised that this effect is already contained in classical celestial mechanics, although not yet defined nor evaluated separately. Secondly, a more general expression of the Hannay angle, valid for an action-dependent potential is given; such a generalised expression takes into account that the restricted three-body problem is a time-dependent, two degrees of freedom problem even when restricted to the circular motion of the test body. Consequently, (some of) the eccentricity terms cannot be neglected {\it a priori}. Thirdly, we present a new numerical estimate for the Earth adiabatically driven by Jupiter. We also point out errors in a previous derivation of the Hannay angle for the circular restricted three-body problem, with an action-independent potential.Comment: 11 pages. Accepted by Nonlinearit

    Persistent Currents in Quantum Chaotic Systems

    Full text link
    The persistent current of ballistic chaotic billiards is considered with the help of the Gutzwiller trace formula. We derive the semiclassical formula of a typical persistent current ItypI^{typ} for a single billiard and an average persistent current for an ensemble of billiards at finite temperature. These formulas are used to show that the persistent current for chaotic billiards is much smaller than that for integrable ones. The persistent currents in the ballistic regime therefore become an experimental tool to search for the quantum signature of classical chaotic and regular dynamics.Comment: 4 pages (RevTex), to appear in Phys. Rev. B, No.59, 12256-12259 (1999
    • …
    corecore