31,090 research outputs found

    Robust point correspondence applied to two and three-dimensional image registration

    Get PDF
    Accurate and robust correspondence calculations are very important in many medical and biological applications. Often, the correspondence calculation forms part of a rigid registration algorithm, but accurate correspondences are especially important for elastic registration algorithms and for quantifying changes over time. In this paper, a new correspondence calculation algorithm, CSM (correspondence by sensitivity to movement), is described. A robust corresponding point is calculated by determining the sensitivity of a correspondence to movement of the point being matched. If the correspondence is reliable, a perturbation in the position of this point should not result in a large movement of the correspondence. A measure of reliability is also calculated. This correspondence calculation method is independent of the registration transformation and has been incorporated into both a 2D elastic registration algorithm for warping serial sections and a 3D rigid registration algorithm for registering pre and postoperative facial range scans. These applications use different methods for calculating the registration transformation and accurate rigid and elastic alignment of images has been achieved with the CSM method. It is expected that this method will be applicable to many different applications and that good results would be achieved if it were to be inserted into other methods for calculating a registration transformation from correspondence

    Description of the three axis low-g accelerometer package

    Get PDF
    The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment

    Joining techniques for fabrication of composite air-cooled turbine blades and vanes

    Get PDF
    Activated diffusion brazing studies of joining methods for composite air-cooled turbine blade and vane fabricatio

    Decimation and Harmonic Inversion of Periodic Orbit Signals

    Full text link
    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.Comment: 22 pages, 3 figures, submitted to J. Phys.

    Multiplicities of Periodic Orbit Lengths for Non-Arithmetic Models

    Full text link
    Multiplicities of periodic orbit lengths for non-arithmetic Hecke triangle groups are discussed. It is demonstrated both numerically and analytically that at least for certain groups the mean multiplicity of periodic orbits with exactly the same length increases exponentially with the length. The main ingredient used is the construction of joint distribution of periodic orbits when group matrices are transformed by field isomorphisms. The method can be generalized to other groups for which traces of group matrices are integers of an algebraic field of finite degree

    Chaos and Quantum Thermalization

    Full text link
    We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey {\it Berry's conjecture}. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon {\it eigenstate thermalization}. We show that a generic initial state will approach thermal equilibrium at least as fast as O(/Δ)t1O(\hbar/\Delta)t^{-1}, where Δ\Delta is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a new foundation for quantum statistical mechanics.Comment: 28 pages in Plain TeX plus 2 uuencoded PS figures (included); minor corrections only, this version will be published in Phys. Rev. E; UCSB-TH-94-1

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio
    corecore