28,703 research outputs found

    Correlations of chaotic eigenfunctions: a semiclassical analysis

    Full text link
    We derive a semiclassical expression for an energy smoothed autocorrelation function defined on a group of eigenstates of the Schr\"odinger equation. The system we considered is an energy-conserved Hamiltonian system possessing time-invariant symmetry. The energy smoothed autocorrelation function is expressed as a sum of three terms. The first one is analogous to Berry's conjecture, which is a Bessel function of the zeroth order. The second and the third terms are trace formulae made from special trajectories. The second term is found to be direction dependent in the case of spacing averaging, which agrees qualitatively with previous numerical observations in high-lying eigenstates of a chaotic billiard.Comment: Revtex, 13 pages, 1 postscript figur

    Lower bounds for communication capacities of two-qudit unitary operations

    Full text link
    We show that entangling capacities based on the Jamiolkowski isomorphism may be used to place lower bounds on the communication capacities of arbitrary bipartite unitaries. Therefore, for these definitions, the relations which have been previously shown for two-qubit unitaries also hold for arbitrary dimensions. These results are closely related to the theory of the entanglement-assisted capacity of channels. We also present more general methods for producing ensembles for communication from initial states for entanglement creation.Comment: 9 pages, 2 figures, comments welcom

    Topological Aspects of the Non-adiabatic Berry Phase

    Full text link
    The topology of the non-adiabatic parameter space bundle is discussed for evolution of exact cyclic state vectors in Berry's original example of split angular momentum eigenstates. It turns out that the change in topology occurs at a critical frequency. The first Chern number that classifies these bundles is proportional to angular momentum. The non-adiabatic principal bundle over the parameter space is not well-defined at the critical frequency.Comment: 14 pages, Dep. of Physics, Uni. of Texas at Austin, Austin, Texas 78712, to appear in J. Physics

    Production of Dry Matter from Aspen Stands Harvested on Short Rotations

    Get PDF

    Geometric gauge potentials and forces in low-dimensional scattering systems

    Full text link
    We introduce and analyze several low-dimensional scattering systems that exhibit geometric phase phenomena. The systems are fully solvable and we compare exact solutions of them with those obtained in a Born-Oppenheimer projection approximation. We illustrate how geometric magnetism manifests in them, and explore the relationship between solutions obtained in the diabatic and adiabatic pictures. We provide an example, involving a neutral atom dressed by an external field, in which the system mimics the behavior of a charged particle that interacts with, and is scattered by, a ferromagnetic material. We also introduce a similar system that exhibits Aharonov-Bohm scattering. We propose some practical applications. We provide a theoretical approach that underscores universality in the appearance of geometric gauge forces. We do not insist on degeneracies in the adiabatic Hamiltonian, and we posit that the emergence of geometric gauge forces is a consequence of symmetry breaking in the latter.Comment: (Final version, published in Phy. Rev. A. 86, 042704 (2012

    Stabilization of solitons in PT models with supersymmetry by periodic management

    Full text link
    We introduce a system based on dual-core nonlinear waveguides with the balanced gain and loss acting separately in the cores. The system features a "supersymmetry" when the gain and loss are equal to the inter-core coupling. This system admits a variety of exact solutions (we focus on solitons), which are subject to a specific subexponential instability. We demonstrate that the application of a "management", in the form of periodic simultaneous switch of the sign of the gain, loss, and inter-coupling, effectively stabilizes solitons, without destroying the supersymmetry. The management turns the solitons into attractors, for which an attraction basin is identified. The initial amplitude asymmetry and phase mismatch between the components transforms the solitons into quasi-stable breathers.Comment: In press EPL 201

    On the measurement problem for a two-level quantum system

    Get PDF
    A geometric approach to quantum mechanics with unitary evolution and non-unitary collapse processes is developed. In this approach the Schrodinger evolution of a quantum system is a geodesic motion on the space of states of the system furnished with an appropriate Riemannian metric. The measuring device is modeled by a perturbation of the metric. The process of measurement is identified with a geodesic motion of state of the system in the perturbed metric. Under the assumption of random fluctuations of the perturbed metric, the Born rule for probabilities of collapse is derived. The approach is applied to a two-level quantum system to obtain a simple geometric interpretation of quantum commutators, the uncertainty principle and Planck's constant. In light of this, a lucid analysis of the double-slit experiment with collapse and an experiment on a pair of entangled particles is presented.Comment: for related papers, see http://www.uwc.edu/dept/math/faculty/kryukov

    A Class of Parameter Dependent Commuting Matrices

    Get PDF
    We present a novel class of real symmetric matrices in arbitrary dimension dd, linearly dependent on a parameter xx. The matrix elements satisfy a set of nontrivial constraints that arise from asking for commutation of pairs of such matrices for all xx, and an intuitive sufficiency condition for the solvability of certain linear equations that arise therefrom. This class of matrices generically violate the Wigner von Neumann non crossing rule, and is argued to be intimately connected with finite dimensional Hamiltonians of quantum integrable systems.Comment: Latex, Added References, Typos correcte
    corecore