A geometric approach to quantum mechanics with unitary evolution and
non-unitary collapse processes is developed. In this approach the Schrodinger
evolution of a quantum system is a geodesic motion on the space of states of
the system furnished with an appropriate Riemannian metric. The measuring
device is modeled by a perturbation of the metric. The process of measurement
is identified with a geodesic motion of state of the system in the perturbed
metric. Under the assumption of random fluctuations of the perturbed metric,
the Born rule for probabilities of collapse is derived. The approach is applied
to a two-level quantum system to obtain a simple geometric interpretation of
quantum commutators, the uncertainty principle and Planck's constant. In light
of this, a lucid analysis of the double-slit experiment with collapse and an
experiment on a pair of entangled particles is presented.Comment: for related papers, see http://www.uwc.edu/dept/math/faculty/kryukov