901 research outputs found

    Enrichment of fusobacteria in sea surface oil slicks from the deepwater horizon oil spill

    Get PDF
    The Deepwater Horizon (DWH) oil spill led to rapid microbial community shifts in the Gulf of Mexico, including the formation of unprecedented quantities of marine oil snow (MOS) and of a massive subsurface oil plume. The major taxa that bloomed in sea surface oil slicks during the spill included Cycloclasticus, and to a lesser extent Halomonas, Alteromonas, and Pseudoalteromonas—organisms that grow and degrade oil hydrocarbons aerobically. Here, we show that sea surface oil slicks at DWH contained obligate and facultative anaerobic taxa, including members of the obligate anaerobic phylum Fusobacteria that are commonly found in marine sediment environments. Pyrosequencing analysis revealed that Fusobacteria were strongly selected for when sea surface oil slicks were allowed to develop anaerobically. These organisms have been found in oil-contaminated sediments in the Gulf of Mexico, in deep marine oil reservoirs, and other oil-contaminated sites, suggesting they have putative hydrocarbon-degrading qualities. The occurrence and strong selection for Fusobacteria in a lab-based incubation of a sea surface oil slick sample collected during the spill suggests that these organisms may have become enriched in anaerobic zones of suspended particulates, such as MOS. Whilst the formation and rapid sinking of MOS is recognised as an important mechanism by which a proportion of the Macondo oil had been transported to the sea floor, its role in potentially transporting microorganisms, including oil-degraders, from the upper reaches of the water column to the seafloor should be considered. The presence of Fusobacteria on the sea surface—a highly oxygenated environment—is intriguing, and may be explained by the vertical upsurge of oil that provided a carrier to transport these organisms from anaerobic/micro-aerophilic zones in the oil plume or seabed to the upper reaches of the water column. We also propose that the formation of rapidly-sinking MOS may have re-transported these, and other microbial taxa, to the sediment in the Gulf of Mexico

    COVID-19: Can we treat the mother without harming her baby?

    Get PDF
    First published online: 25 January 2021Medical care is predicated on ‘do no harm’, yet the urgency to find drugs and vaccines to treat or prevent COVID-19 has led to an extraordinary effort to develop and test new therapies. Whilst this is an essential cornerstone of a united global response to the COVID-19 pandemic, the absolute requirements for meticulous efficacy and safety data remain. This is especially pertinent to the needs of pregnant women; a group traditionally poorly represented in drug trials, yet a group at heightened risk of unintended adverse materno-fetal consequences due to the unique physiology of pregnancy and the life course implications of fetal or neonatal drug exposure. However, due to the complexities of drug trial participation when pregnant (be they vaccines or therapeutics for acute disease), many clinical drug trials will exclude them. Clinicians must determine the best course of drug treatment with a dearth of evidence from either clinical or preclinical studies, where at least in the short term they may be more focused on the outcome of the mother than of her offspring.Michael D. Wiese, Mary J. Berry, Pravin Hissaria, Jack R.T. Darby, and Janna L. Morriso

    Sun exposure behaviour, seasonal vitamin D deficiency, and relationship to bone health in adolescents

    Get PDF
    YesContext: Vitamin D is essential for bone health in adolescence, where there is rapid bone mineral content accrual. As cutaneous sun-exposure provides vitamin D, there is no recommended oral intake for UK adolescents. Objective: Assess seasonal vitamin D status and its contributors in white Caucasian adolescents, and examine bone health in those found deficient. Design: Prospective cohort study. Setting: Six schools in Greater Manchester, UK. Participants: 131 adolescents, 12–15 years. Intervention(s): Seasonal assessment of circulating 25-hydroxyvitamin D (25OHD), personal sunexposure and dietary vitamin D. Adolescents deficient (25OHD <10 ng/mL/25 nmol/L) in ≥one season underwent dual-energy X-ray absorptiometry (lumbar spine, femoral neck), with bone mineral apparent density (BMAD) correction for size, and peripheral quantitative computed tomography (distal radius) for volumetric (v)BMD. Main Outcome Measure: Serum 25OHD; BMD. Results: Mean 25OHD was highest in September: 24.1 (SD 6.9) ng/mL and lowest in January: 15.5 (5.9) ng/mL. Over the year, 16% were deficient in ≥one season and 79% insufficient (25OHD <20 ng/mL/50 nmol/L) including 28% in September. Dietary vitamin D was low year-round while personal sun-exposure was seasonal and predominantly across the school week. Holidays accounted for 17% variation in peak 25OHD (p<0.001). Nineteen adolescents underwent bone assessment, which showed low femoral neck BMAD versus matched reference data (p=0.0002), 3 with Z≤ -2.0 distal radius trabecular vBMD. Conclusions: Sun-exposure levels failed to provide adequate vitamin D, ~one-quarter adolescents insufficient even at summer-peak. Seasonal vitamin D deficiency was prevalent and those affected had low BMD. Recommendations on vitamin D acquisition are indicated in this age-group.The Bupa Foundation (Grant number TBF-M10-017)

    Effect of noise on geometric logic gates for quantum computation

    Full text link
    We introduce the non-adiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation and show how it could be implemented with superconducting charge qubits. While it may circumvent many of the drawbacks related to the adiabatic (Berry) version of geometric gates, we show that the effect of fluctuations of the control parameters on non-adiabatic phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater extent quantum gates that use the Berry phase instead of the dynamic phase.Comment: 8 pages, 4 figures; published versio

    Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps

    Full text link
    An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jumpwise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation parameter takes its maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200

    Structural and biophysical characterization of bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1

    Get PDF
    Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins

    Chaos and Quantum-Classical Correspondence via Phase Space Distribution Functions

    Full text link
    Quantum-classical correspondence in conservative chaotic Hamiltonian systems is examined using a uniform structure measure for quantal and classical phase space distribution functions. The similarities and differences between quantum and classical time-evolving distribution functions are exposed by both analytical and numerical means. The quantum-classical correspondence of low-order statistical moments is also studied. The results shed considerable light on quantum-classical correspondence.Comment: 16 pages, 5 figures, to appear in Physical Review

    Spin squeezing and pairwise entanglement for symmetric multiqubit states

    Full text link
    We show that spin squeezing implies pairwise entanglement for arbitrary symmetric multiqubit states. If the squeezing parameter is less than or equal to 1, we demonstrate a quantitative relation between the squeezing parameter and the concurrence for the even and odd states. We prove that the even states generated from the initial state with all qubits being spin down, via the one-axis twisting Hamiltonian, are spin squeezed if and only if they are pairwise entangled. For the states generated via the one-axis twisting Hamiltonian with an external transverse field for any number of qubits greater than 1 or via the two-axis counter-twisting Hamiltonian for any even number of qubits, the numerical results suggest that such states are spin squeezed if and only if they are pairwise entangled.Comment: 6 pages. Version 3: Small corrections were mad

    Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery

    Get PDF
    Abstract not availableTamara J. Varcoe, Jack R.T. Darby, Kathryn L. Gatford, Stacey L. Holman, Pearl Cheung, Mary J. Berry, Michael D. Wiese and Janna L. Morriso

    A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation

    Full text link
    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012
    • …
    corecore