45 research outputs found

    Estimation and removal of spurious echo artifacts in single-voxel MRS using sensitivity encoding

    Get PDF
    PurposeIn localized MRS, spurious echo artifacts commonly occur when unsuppressed signal outside the volume of interest is excited and refocused. In the spectral domain, these signals often overlap with metabolite resonances and hinder accurate quantification. Because the artifacts originate from regions separate from the target MRS voxel, this work proposes that sensitivity encoding based on receive-coil sensitivity profiles may be used to separate these signal contributions.MethodsNumerical simulations were performed to explore the effect of sensitivity-encoded separation for unknown artifact regions. An imaging-based approach was developed to identify regions that may contribute to spurious echo artifacts, and tested for sensitivity-based unfolding of signal on six data sets from three brain regions. Spectral data reconstructed using the proposed method (“ERASE”) were compared with the standard coil combination.ResultsThe method was able to fully unfold artifact signals if regions were known a priori. Mismatch between estimated and true artifact regions reduced the efficiency of removal, yet metabolite signals were unaffected. Water suppression imaging was able to identify regions of unsuppressed signal, and ERASE (from up to eight regions) led to visible removal of artifacts relative to standard reconstruction. Fitting errors across major metabolites were also lower; for example, Cramér–Rao lower bounds of myo-inositol were 13.7% versus 17.5% for ERASE versus standard reconstruction, respectively.ConclusionThe ERASE reconstruction tool was demonstrated to reduce spurious echo artifacts in single-voxel MRS. This tool may be incorporated into standard workflows to improve spectral quality when hardware limitations or other factors result in out-of-voxel signal contamination

    tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel

    Get PDF
    Background and objective Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. Methods Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. Results In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = −3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. Conclusions Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects

    Calibration-free regional RF shims for MRS

    Get PDF
    Purpose: Achieving a desired RF transmit field (B1+) in small regions-of-interest (ROIs) is critical for single-voxel MR spectroscopy at ultra-high field. RF shimming, using parallel transmission, requires B1+ mapping and optimisation, which limits its ease-of-use. This work aimed to generate calibration-free RF shims for pre-defined target ROIs, which can be applied to any participant, to produce a desired absolute magnitude B1+ (|B1+|).Methods: RF shims were found offline by joint-optimisation on a database, comprising B1+ maps from 11 subjects, considering ROIs in occipital cortex (OCC), hippocampus (Hippo.) and posterior-cingulate (PCC), as well as whole brain. The |B1+| achieved was compared to a tailored shimming approach, and MR spectra were acquired using tailored and calibration-free shims in 4 participants. Global and local 10g specific absorption rate (SAR) deposition were estimated using Duke and Ella dielectric models.Results: There was no difference in the mean |B1+| produced using calibration-free vs. tailored RF shimming in OCC (p=0.15), Hippo. (p=0.5) or PCC (p=0.98) although differences were observed in the root-mean-square error (RMSE) |B1+|. Spectra acquired using calibration-free shims had similar SNR and low residual water signal. Under identical power settings, SAR deposition was lower compared to operating in quadrature mode. For example, total head SAR was around 35% less for OCC.Conclusion: This work demonstrates that static RF shims, optimised offline for small regions, avoid the need for B1+ mapping and optimisation for each ROI and participant. Furthermore, power settings may be increased when using calibration-free shims to better take advantage of RF shimming

    Association between tDCS induced GABA change and estimated electric field in the cortex

    Get PDF
    Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro- behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the actual electric field in the cortex. Our aim was to examine whether the variability in electric fields, estimated using computational simulations, explains the variability in tDCS induced GABA changes measured using magnetic resonance spectroscopy (MRS). Data from five studies (total N = 56 complete cases) were combined. The anode and cathode were placed over the left M1 (3 studies, N = 24) or right temporal cortex (2 studies, N = 32), and contralateral supraorbital ridge respectively. GABA to total Creatine ratios were measured and estimated, before and after tDCS application. sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. The electric fields were simulated in a finite element model of the head, based on individual MPRAGE images, using SimNIBS. Twelve linear mixed effects models were run, one for each E-field variable (mean and 95th percentile of magnitude, normal and tangential components), and separately for the M1 and temporal data. We found that in M1, E-field in the MRS voxel is related to the GABA drop, adding to the accumulating evidence that supports individualised dosing of tDCS. We also found an interaction with grey matter volume within the MRS voxel, emphasising the need to appropriately choose and evaluate any outcome measures which we expect to be related to E-field. While we did not find a similar association in the temporal region, given the challenges of modelling the E-field in this region and possible homeostatic metaplastic effects, such an association cannot be ruled out

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson\u27s and intraclass correlation coefficients (ICC). Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p \u3c 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed

    tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel

    Get PDF
    Background and objectiveTranscranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. MethdsData from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. ResultsIn M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. ConclusionsOur data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects

    Connectivity-Guided Theta Burst Transcranial Magnetic Stimulation Versus Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Moderate to Severe Depression: Magnetic Resonance Imaging Protocol and SARS-CoV-2–Induced Changes for a Randomized Double-blind Controlled Trial

    Get PDF
    Background:Depression is a significant health and economic burden. In approximately one third of patients, depression is resistant to first line treatments and therefore it is essential that alternative treatments are found. Transcranial magnetic stimulation (TMS) is a neuromodulatory treatment involving the application of magnetic pulses to the brain that is approved in the UK and the US in treatment resistant depression. This trial aims to compare the clinical effectiveness, cost-effectiveness and mechanism of action between standard treatment repetitive TMS (rTMS) targeted at the F3 EEG site, with a newer treatment – a type of TMS called theta-burst stimulation (TBS) targeted based on measures of functional brain connectivity. This protocol outlines the brain imaging acquisition and analysis for the BRIGhTMIND trial that is used to create personalised TMS targets and answer the proposed mechanistic hypotheses.Objective:The objectives of the imaging arm of the BRIGhTMIND study are to identify functional and neurochemical brain signatures indexing the treatment mechanisms of rTMS and cgiTBS and to identify imaging-based markers predicting response to treatment.Methods:The study is a randomised double-blind controlled trial with 1:1 allocation to either 20 sessions of a) TBS or b) standard rTMS. Multimodal magnetic resonance imaging (MRI) is acquired per participant at baseline (prior to TMS treatment) with T1-weighted and task-free functional MRI during rest (rsfMRI) utilised to estimate TMS targets. For participants enrolled in the mechanistic substudy additional diffusion-weighted, sequences are acquired at baseline and at post-treatment follow-up 16 weeks after treatment randomisation. Core datasets of T1-weighted and task-free functional MRI during rest (rsfMRI) are acquired for all participants and utilised to estimate TMS targets. Additional sequences of arterial spin labelling, magnetic resonance spectroscopy and diffusion-weighted images are acquired dependent on recruitment site for mechanistic evaluation. Standard rTMS treatment is targeted at the F3 electrode site over the left dorsolateral prefrontal cortex whilst TBS treatment is guided using the coordinate of peak effective connectivity from the right anterior insula to the left dorsolateral prefrontal cortex. Both treatment targets benefit from a level of MRI-guidance but only TBS is provided with precision targeting based on functional brain connectivity.Results:Recruitment began January 2019 and is ongoing. Data collection is expected to continue until January 2023.Conclusions:This trial will determine the impact of precision MRI guidance on rTMS treatment, and furthermore, assess the neural mechanisms underlying this treatment in treatment resistant depressed patients. Clinical Trial: International Standard Randomized Controlled Trial Number (ISRCTN) 19674644; https://www.isrctn.com/ISRCTN19674644. Registered 2nd October 2018

    Across‐vendor standardization of semi‐LASER for single‐voxel MRS at 3T

    Get PDF
    The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single‐shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high‐ and ultra‐high fields. Across‐vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short‐echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient‐modulated RF pulses, to implement it on three major platforms and to evaluate the between‐vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel‐based first and second order B0 shimming and voxel‐based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient‐modulated pulses considered (GOIA, FOCI and BASSI), GOIA‐WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter‐pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE ‘Braino’ phantom between vendors. High‐quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal‐to‐noise ratio [less than] 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi‐site studies with clinical cohorts

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness
    corecore