83 research outputs found

    Identifying Alternative Hyper-Splicing Signatures in MG-Thymoma by Exon Arrays

    Get PDF
    BACKGROUND: The vast majority of human genes (>70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. METHODOLOGY/PRINCIPAL FINDINGS: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. CONCLUSIONS/SIGNIFICANCE: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatibility gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF(2) and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MG-thymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches

    Isolation of potent human Fab fragments against a novel highly immunogenic region on human muscle acetylcholine receptor which protect the receptor from myasthenic autoantibodies.

    No full text
    In the autoimmune disease myasthenia gravis (MG), antibodies against the muscle nicotinic acetylcholine receptor (AChR) cause loss of functional AChR in the neuromuscular junction. To isolate AChR-specific human antibody fragments (Fab), a phage-display library was constructed from an MG patient's thymic B lymphocytes. The first Fab isolated had a low affinity for human AChR, but two sequential antibody chain shufflings using the MG donor heavy and light chain gene repertoires resulted in isolating two new Fab with an approximately 30-fold higher binding ability. The selected Fab contained extensively mutated heavy and light chains and probably represent intraclonal variants of a common progenitor having diverged in vivo by somatic hypermutation. Interestingly, the isolated Fab bound to an extracellular highly immunogenic region located either on an alpha-subunit site affected by the gamma/epsilon-subunits or on the interface between alpha- and gamma/epsilon-subunits. This region is not the previously described "main immunogenic region" (MIR), although it seems to be close to it, as one improved Fab and an anti-MIR mAb competed for AChR binding with distinctly different subpopulations of MG sera. Furthermore, this Fab protected surface AChR in cell cultures against MG autoantibody-induced antigenic modulation, suggesting a potential therapeutic use in MG, especially in combination with a human anti-MIR Fab

    Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand

    No full text
    International audienceNatural thymic T regulatory (tTreg) cells maintain tolerance to self-antigen. These cells are generated in the thymus, but how this generation occurs is still controversial. Furthermore, the contribution of thymus epithelial cells to this process is still unclear, especially in humans. Using an exceptional panel of human thymic samples, we demonstrated that medullary thymus epithelial cells (mTECs) promote the generation of tTreg cells and favor their function. These effects were mediated through soluble factors and were mTEC specific since other cell types had no such effect. By evaluating the effects of mTECs on the absolute number of Treg cells and their state of proliferation or cell death, we conclude that mTECs promote the proliferation of newly generated CD25 þ cells from CD4 þ CD25 À cells and protect Treg cells from cell death. This observation implicates Bcl-2 and mitochondrial membrane potential changes, indicating that the intrinsic cell death pathway is involved in Treg protection by mTECs. Interestingly, when the mTECs were cultured directly with purified Treg cells, they were able to promote their phenotype but not their expansion, suggesting that CD4 þ CD25 À cells have a role in the expansion process. To explore the mechanisms involved, several neutralizing antibodies were tested. The effects of mTECs on Treg cells were essentially due to interleukin (IL)-2 overproduction by thymus CD4 þ T cells. We then searched for a soluble factor produced by mTECs able to increase IL-2 production by CD4 þ cells and could identify the inducible T-cell costimulator ligand (ICOSL). Our data strongly suggest a) me´nage a` trois *: mTEC cells (via ICOSL) induce overproduction of IL-2 by CD25 À T cells leading to the expansion of tTreg cells. Altogether, these results demonstrate for the first time a role of mTECs in promoting Treg cell expansion in the human thymus and implicate IL-2 and ICOSL in this process

    The susceptibility of Aire(-/-) mice to experimental myasthenia gravis involves alterations in regulatory T cells

    No full text
    The autoimmune regulator (Aire) is involved in the prevention of autoimmunity by promoting thymic expression of tissue restricted antigens which leads to elimination of self-reactive T cells. We found that Aire knockout (KO) mice as well as mouse strains that are susceptible to experimental autoimmune myasthenia gravis (EAMG) have lower thymic expression of acetylcholine receptor (AChR- the main autoantigen in MG), compared to wild type (WT) mice and EAMG-resistant mouse strains, respectively. We demonstrated that Aire KO mice have a significant and reproducible lower frequency of CD4+Foxp3+ cells and a higher expression of Th17 markers in their thymus, compared to wild type (WT) mice. These findings led us to expect that Aire KO mice would display increased susceptibility to EAMG. Surprisingly, when EAMG was induced in young (2 month-old) mice, EAMG was milder in Aire KO than in WT mice for several weeks until the age of about 5 months. However, when EAMG was induced in relatively aged (6 month-old) mice, Aire KO mice presented higher disease severity than WT controls. This age-related change in susceptibility to EAMG correlated with an elevated proportion of Treg cells in the spleens of young but not old KO, compared to WT mice, suggesting a role for peripheral Treg cells in the course of disease. Our observations point to a possible link between Aire and Treg cells and suggest an involvement for both in the pathogenesis of myasthenia.Revital Aricha, Tali Feferman, Hamish S. Scott, Miriam C. Souroujon, Sonia Berrih-Aknin, Sara Fuch
    • …
    corecore