4 research outputs found

    Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth

    Full text link
    ABSTRACT Certain nodulating nitrogen-fixing bacteria in legumes and other nodule endophytes perform different plant-growth promoting processes. The objective of this study was to evaluate 26 bacterial strains isolated from cowpea nodules grown in floodplain soils in the Brazilian savannas, regarding performance of plant-growth promoting processes and ability to enhance cowpea growth. We also identified these strains by 16S rRNA sequencing. The following processes were evaluated: free-living biological nitrogen fixation (BNF), solubilization of calcium, aluminum and iron phosphates and production of indole-3-acetic acid (IAA). The abilities to nodulate and promote cowpea growth were evaluated in Leonard jars. Partial sequencing of the 16S rRNA gene identified 60 % of the strains as belonging to genus Paenibacillus. The following four genera were also identified: Bacillus, Bradyrhizobium, Enterobacter and Pseudomonas. None of the strains fixed N2 free-living. Among the strains, 80 % solubilized Ca phosphate and one solubilized Al phosphate and none solubilized Fe phosphate. The highest IAA concentrations (52.37, 51.52 and 51.00 μg mL−1) were obtained in the 79 medium with tryptophan by Enterobacter strains UFPI B5-7A, UFPI B5-4 and UFPI B5-6, respectively. Only eight strains nodulated cowpea, however, all increased production of total dry matter. The fact that the strains evaluated perform different biological processes to promote plant growth indicates that these strains have potential use in agricultural crops to increase production and environmental sustainability

    Solubilisation of inorganic phosphates by inoculant strains from tropical legumes

    Get PDF
    Microbial solubilisation of low soluble inorganic phosphates is an important process contributing for the phosphorus available to plants in tropical soils. This study evaluates the ability of inoculant strains for tropical legumes to solubilise inorganic phosphates of low solubility that are found in tropical soils. Seven strains of Leguminosae nodulating bacteria (LNB) were compared with one another and with a non-nodulating positive control, Burkholderia cepacia (LMG 1222T). Four of the strains are used as inoculants for cowpeas (Vigna unguiculata) (Bradyrhizobium sp. UFLA 03-84; Bradyrhizobium elkani INPA 03-11B and Bradyrhizobium japonicum BR3267) or for common beans (Phaseolus vulgaris) (Rhizobium tropici CIAT 899T). Rhizobium etli UFLA 02-100 and Rhizobium leguminosarum 316C10a are also efficient nodulators of beans and Cupriavidus taiwanensis LMG 19424T nodulates on Mimosa pudica. Two experiments, with solid and liquid media, were performed to determine whether the strains were able to solubilise CaHPO4, Al(H2PO4)3 or FePO4.2H2O. On solid GELP medium none of the strains dissolved FePO4.2H2O, but LMG 1222, UFLA 03-84 and CIAT 899 solubilised CaHPO4 particularly well. These strains, along with LMG 19424 and BR 3267, were also able to increase the solubility of Al(H2PO4)3. In liquid GELP medium, LMG 1222 solubilised all phosphate sources, but no legume nodulating strain could increase the solubility of Al(H2PO4)3. The strains CIAT 899 and UFLA 02-100 were the only legume nodulating bacteria able to solubilise the other phosphate sources in liquid media, dissolving both CaHPO4 and FePO4.2H2O. There was a negative correlation between the pH of the culture medium and the concentration of soluble phosphate when the phosphorus source was CaHPO4 or FePO4.2H2O. The contribution of these strains to increasing the phosphorus nutrition of legumes and non-legume plant species should be investigated further by in vivo experiments
    corecore