16,055 research outputs found

    Charged-Current Disappearance Measurements in the NuMI Off-Axis Beam

    Get PDF
    This article studies the potential of combining charged-current disappearance measurements of \nu_{\mu} to \nu_{\tau} from MINOS and an off-axis beam. I find that the error on \Delta m^2 from a 100 kt-yr off-axis measurement is a few percent of itself. Further, I find little improvement to an off-axis measurement by combining it with MINOS.Comment: Presented at NuFact'02. Four pages, three figure

    Feasibility model of an advanced crossed-field amplifier for space communication systems

    Get PDF
    Feasibility model of cross field amplifier for use in amplitude or frequency modulation transmitter

    Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 1: Summary report

    Get PDF
    A 1/8-scale structural dynamics model of the space shuttle orbiter was analyzed using the NASA Structural Analysis System (NASTRAN). Comparison of the calculated eigenvalues with preliminary test data for the unrestrained condition indicate that the analytical model was consistently stiffer, being about 20% higher in the first mode. The eigenvectors show reasonably good agreement with test data. A series of analytical and experimental investigations undertaken to resolve the discrepancy are described. Modifications in the NASTRAN model based upon these investigations resulted in close agreement for both eigenvalues and eigenvectors

    On the reduction of the multidimensional Schroedinger equation to a first order equation and its relation to the pseudoanalytic function theory

    Full text link
    Given a particular solution of a one-dimensional stationary Schroedinger equation (SE) this equation of second order can be reduced to a first order linear differential equation. This is done with the aid of an auxiliary Riccati equation. We show that a similar fact is true in a multidimensional situation also. We consider the case of two or three independent variables. One particular solution of (SE) allows us to reduce this second order equation to a linear first order quaternionic differential equation. As in one-dimensional case this is done with the aid of an auxiliary Riccati equation. The resulting first order quaternionic equation is equivalent to the static Maxwell system. In the case of two independent variables it is the Vekua equation from theory of generalized analytic functions. We show that even in this case it is necessary to consider not complex valued functions only, solutions of the Vekua equation but complete quaternionic functions. Then the first order quaternionic equation represents two separate Vekua equations, one of which gives us solutions of (SE) and the other can be considered as an auxiliary equation of a simpler structure. For the auxiliary equation we always have the corresponding Bers generating pair, the base of the Bers theory of pseudoanalytic functions, and what is very important, the Bers derivatives of solutions of the auxiliary equation give us solutions of the main Vekua equation and as a consequence of (SE). We obtain an analogue of the Cauchy integral theorem for solutions of (SE). For an ample class of potentials (which includes for instance all radial potentials), this new approach gives us a simple procedure allowing to obtain an infinite sequence of solutions of (SE) from one known particular solution
    corecore