326 research outputs found

    The Geometry of Niggli Reduction I: The Boundary Polytopes of the Niggli Cone

    Full text link
    Correct identification of the Bravais lattice of a crystal is an important step in structure solution. Niggli reduction is a commonly used technique. We investigate the boundary polytopes of the Niggli-reduced cone in the six-dimensional space G6 by algebraic analysis and organized random probing of regions near 1- through 8-fold boundary polytope intersections. We limit consideration of boundary polytopes to those avoiding the mathematically interesting but crystallographically impossible cases of 0 length cell edges. Combinations of boundary polytopes without a valid intersection in the closure of the Niggli cone or with an intersection that would force a cell edge to 0 or without neighboring probe points are eliminated. 216 boundary polytopes are found: 15 5-D boundary polytopes of the full G6 Niggli cone, 53 4-D boundary polytopes resulting from intersections of pairs of the 15 5-D boundary polytopes, 79 3-D boundary polytopes resulting from 2-fold, 3-fold and 4-fold intersections of the 15 5-D boundary polytopes, 55 2-D boundary polytopes resulting from 2-fold, 3-fold, 4-fold and higher intersections of the 15 5-D boundary polytopes, 14 1-D boundary polytopes resulting from 3-fold and higher intersections of the 15 5-D boundary polytopes. All primitive lattice types can be represented as combinations of the 15 5-D boundary polytopes. All non-primitive lattice types can be represented as combinations of the 15 5-D boundary polytopes and of the 7 special-position subspaces of the 5-D boundary polytopes. This study provides a new, simpler and arguably more intuitive basis set for the classification of lattice characters and helps to illuminate some of the complexities in Bravais lattice identification. The classification is intended to help in organizing database searches and in understanding which lattice symmetries are "close" to a given experimentally determined cell

    The Geometry of Niggli Reduction II: BGAOL -- Embedding Niggli Reduction

    Full text link
    Niggli reduction can be viewed as a series of operations in a six-dimensional space derived from the metric tensor. An implicit embedding of the space of Niggli-reduced cells in a higher dimensional space to facilitate calculation of distances between cells is described. This distance metric is used to create a program, BGAOL, for Bravais lattice determination. Results from BGAOL are compared to the results from other metric-based Bravais lattice determination algorithms

    Use of entanglement in quantum optics

    Get PDF
    Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles

    An Invertible Seven-Dimensional Dirichlet Cell Characterization of Lattices

    Full text link
    Characterization of crystallographic lattices is an important tool in structure solution, crystallographic database searches and clustering of diffraction images in serial crystallography. Characterization of lattices by Niggli-reduced cells (based on the three shortest non-coplanar lattice edge vectors) or by Delaunay-reduced cells (based on four edge vectors summing to zero and all meeting at obtuse or right angles) are commonly used. The Niggli cell derives from Minkowski reduction. The Delaunay cell derives from Selling reduction. All are related to the Wigner-Seitz (or Dirichlet, or Voronoi) cell of the lattice, which consists of the points at least as close to a chosen lattice point than they are to any other lattice point. Starting from a Niggli-reduced cell, the Dirichlet cell is characterized by the planes determined by thirteen lattice half-edges: the midpoints of the three Niggli cell edges, the six Niggli cell face diagonals and the four body-diagonals, but seven of the edge lengths are sufficient: three edge lengths, the three shorter of each pair of face-diagonal lengths and the shortest body-diagonal length, from which the Niggli-reduced cell may be recovered.Comment: 29 pages, 2 figure

    Fiber bundles and quantum theory

    Get PDF
    corecore