115 research outputs found

    Modular Design of Highly Active Unitized Reversible Fuel Cell Electrocatalysts

    Get PDF
    A modular, multicomponent catalyst design principle is introduced and exemplified using a three-component, oxygen reduction reaction/oxygen evolution reaction (ORR/OER) catalyst designed for the oxygen electrode of unitized reversible fuel cells (URFCs). The catalyst system exhibited unprecedented catalytic performance in liquid electrolyte and in single unitized reversible fuel cell tests. The distinct components, each active for either ORR or OER, are prepared and optimized independently of each other and physically mixed during electrode preparation. The new modular URFC catalyst, Cu-α-MnO2/XC-72R/NiFe-LDH, combined a carbon-supported, Cu-stabilized α-MnO2 ORR catalyst with a NiFe-LDH OER catalyst and displayed improved activity and stability under URFC cycling compared to platinum group metal references. Stepwise modular optimization of the carbon and the interlayer anions of the OER component led to a further improved derivative, Cu-α-MnO2/O-MWCNTs/NiFe-LDH-Cl–. This URFC catalyst outperformed all previous materials in terms of its combined overpotential ηORR-OER and performance stability in the rotating disk electrode (RDE) scale. Its single-cell performance is analyzed and discussed

    Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure.

    Get PDF
    BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86), is a negative regulator of T-cell activation. We collected T cells from patients with ALF and investigated whether inhibitory signals down-regulate adaptive immune responses in patients with ALF. METHODS: We collected peripheral blood mononuclear cells from patients with ALF and controls from September 2013 through September 2015 (45 patients with ALF, 20 patients with acute-on-chronic liver failure, 15 patients with cirrhosis with no evidence of acute decompensation, 20 patients with septic shock but no cirrhosis or liver disease, and 20 healthy individuals). Circulating CD4+ T cells were isolated and analyzed by flow cytometry. CD4+ T cells were incubated with antigen, or agonist to CD3 and dendritic cells, with or without antibody against CTLA4; T-cell proliferation and protein expression were quantified. We measured levels of soluble B7 molecules in supernatants of isolated primary hepatocytes, hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood samples from patients with ALF had a higher proportion of CD4+ CTLA4+ T cells than controls; patients with infections had the highest proportions. CD4+ T cells from patients with ALF had a reduced proliferative response to antigen or CD3 stimulation compared to cells from controls; incubation of CD4+ T cells from patients with ALF with an antibody against CTLA4 increased their proliferative response to antigen and to CD3 stimulation, to the same levels as cells from controls. CD4+ T cells from controls up-regulated expression of CTLA4 after 24-48 hours culture with sera from patients with ALF; these sera were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF have increased expression of CTLA4 compared to individuals without ALF; these cells have a reduced response to antigen and CD3 stimulation. We found sera of patients with ALF and from mice with liver injury to have high concentrations of soluble B7, which up-regulates CTLA4 expression by T cells and reduces their response to antigen. Plasma exchange reduces levels of B7 in sera from patients with ALF and might be used to restore antimicrobial responses to patients

    Assessing Optical and Electrical Properties of Highly Active IrO<sub>x</sub> Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry

    Get PDF
    Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and non-destructive methods facilitates the elucidation of structure–activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p–d interband transition energies caused by a transition of μ1-OH to μ3-O species

    Hepatic Notch1 deletion predisposes to diabetes and steatosis via glucose-6-phosphatase and perilipin-5 upregulation

    Get PDF
    Notch signaling pathways have recently been implicated in the pathogenesis of metabolic diseases. However, the role of hepatic Notch signaling in glucose and lipid metabolism remains unclear and needs further investigation as it might be a candidate therapeutic target in metabolic diseases such as nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD). We used hepatocyte-specific Notch1 knockout (KO) mice and liver biopsies from NASH and NAFLD patients to analyze the role of Notch1 in glucose and lipid metabolism. Hepatocyte-specific Notch1 KO mice were fed with a high fat diet (HFD) or a regular diet (RD). We assessed the metabolic phenotype, glucose and insulin tolerance tests, and liver histology. Hepatic mRNA expression was profiled by Affymetrix Mouse Gene arrays and validated by quantitative reverse transcription PCR (qPCR). Akt phosphorylation was visualized by immunoblotting. Gene expression was analyzed in liver biopsies from NASH, NAFLD, and control patients by qPCR. We found that Notch1 KO mice had elevated fasting glucose. Gene expression analysis showed an upregulation of glucose-6-phosphatase, involved in the final step of gluconeogenesis and glucose release from glycogenolysis, and perilipin-5, a regulator of hepatic lipid accumulation. When fed with an HFD KO mice developed overt diabetes and hepatic steatosis. Akt was highly phosphorylated in KO animals and the Foxo1 target gene expression was altered. Accordingly, a reduction in Notch1 and increase in glucose-6-phosphatase and perilipin-5 expression was observed in liver biopsies from NAFLD/NASH compared with controls. Notch1 is a regulator of hepatic glucose and lipid homeostasis. Hepatic impairment of Notch1 expression may be involved in the pathogenesis of human NAFLD/NASH

    Expression of AXL receptor tyrosine kinase relates to monocyte dysfunction and severity of cirrhosis

    Get PDF
    Infectious complications in patients with cirrhosis frequently initiate episodes of decompensation and substantially contribute to the high mortality. Mechanisms of the underlying immuneparesis remain underexplored. TAM receptors (TYRO3/AXL/MERTK) are important inhibitors of innate immune responses. To understand the pathophysiology of immuneparesis in cirrhosis, we detailed TAM receptor expression in relation to monocyte function and disease severity prior to the onset of acute decompensation. TNF-α/IL-6 responses to lipopolysaccharide were attenuated in monocytes from patients with cirrhosis (n = 96) compared with controls (n = 27) and decreased in parallel with disease severity. Concurrently, an AXL-expressing (AXL+) monocyte population expanded. AXL+ cells (CD14+CD16highHLA-DRhigh) were characterised by attenuated TNF-α/IL-6 responses and T cell activation but enhanced efferocytosis and preserved phagocytosis of Escherichia coli. Their expansion correlated with disease severity, complications, infection, and 1-yr mortality. AXL+ monocytes were generated in response to microbial products and efferocytosis in vitro. AXL kinase inhibition and down-regulation reversed attenuated monocyte inflammatory responses in cirrhosis ex vivo. AXL may thus serve as prognostic marker and deserves evaluation as immunotherapeutic target in cirrhosis

    Defective monocyte oxidative burst predicts infection in alcoholic hepatitis and is associated with reduced expression of NADPH oxidase

    No full text
    Objective In order to explain the increased susceptibility to serious infection in alcoholic hepatitis, we evaluated monocyte phagocytosis, aberrations of associated signalling pathways and their reversibility, and whether phagocytic defects could predict subsequent infection. Design Monocytes were identified from blood samples of 42 patients with severe alcoholic hepatitis using monoclonal antibody to CD14. Phagocytosis and monocyte oxidative burst (MOB) were measured ex vivo using flow cytometry, luminometry and bacterial killing assays. Defects were related to the subsequent development of infection. Intracellular signalling pathways were investigated using western blotting and PCR. Interferon-γ (IFN-γ) was evaluated for its therapeutic potential in reversing phagocytic defects. Paired longitudinal samples were used to evaluate the effect of in vivo prednisolone therapy. Results MOB, production of superoxide and bacterial killing in response to Escherichia coli were markedly impaired in patients with alcoholic hepatitis. Pretreatment MOB predicted development of infection within two weeks with sensitivity and specificity that were superior to available clinical markers. Accordingly, defective MOB was associated with death at 28 and 90 days. Expression of the gp91phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was reduced in patients with alcoholic hepatitis demonstrating defective MOB. Monocytes were refractory to IFN-γ stimulation and showed high levels of a negative regulator of cytokine signalling, suppressor of cytokine signalling-1. MOB was unaffected by 7 days in vivo prednisolone therapy. Conclusions Monocyte oxidative burst and bacterial killing is impaired in alcoholic hepatitis while bacterial uptake by phagocytosis is preserved. Defective MOB is associated with reduced expression of NADPH oxidase in these patients and predicts the development of infection and death

    MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure.

    Get PDF
    OBJECTIVE: Acute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response. DESIGN: Flow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer-/-) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice. RESULTS: We demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer-/- mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance. CONCLUSIONS: We identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury

    ACTH-Bestimmungen im Plasma aus dem Bulbus cranialis venae jugularis

    Get PDF
    Der Anstieg der Corticosteroninkretion in das Nebennierenvenenblut frisch hypophysektomierter Ratten diente zur Bestimmung von ACTH-Spiegeln in 1 ml nativen, menschlichen Plasma. Normale ACTH-Plasmaspiegel sind sowohl bei Punktion der Vena cubitalis als auch des Bulbus cranialis venae jugularis durch diese Methode nicht oder nur ungenau zu erfassen. Bei Patienten mit pathologisch erhöhten ACTH-Spiegeln in der Vena cubitalis sind die ACTH-Spiegel im Bulbus cranialis venae jugularis signifikant höher. Es ließ sich eine Beziehung zwischen ACTH-Spiegel in der Peripherie (Vena cubitalis), Differenz der ACTH-Spiegel zwischen Bulbus cranialis venae jugularis und Vena cubitalis und biologischer Halbwertszeit von endogenem ACTH aufstellen. Nach den Ergebnissen der Bestimmung von ACTH-Spiegeln bei Nebennierengesunden läßt sich folgern, daß die biologische Halbwertszeit von endogenem ACTH größer als 4 min sein muß. Bei Patienten mit erhöhten ACTH-Spiegeln ließ sich die biologische Halbwertszeit von endogenem ACTH größenordnungsmäßig mit ca. 40 min berechnen. Bei diesen Patienten betrug die mittlere tägliche ACTH-Inkretion ca. 100 E.ACTH-contents of 1 ml specimens of human plasma were assayed by measurement of increases of corticosterone output in the adrenal vein of acutely hypophysectomized rats. This procedure is not sensitive enough to measure normal ACTH-levels acurately, neither when blood was drawn from the bulbus cranialis venae jugularis, nor from the vena cubitalis. In patients having pathologically elevated ACTH-levels, the ACTH-content of plasma is significantly higher in the bulbus cranialis venae jugularis than in peripheral venous blood. An equation is presented formulating the relation of peripheral ACTH-levels, differences of ACTH-levels between bulbus cranialis venae jugularis and vena cubitalis, and of the biological halflife of endogenous ACTH. On the basis of the results of the determinations of socalled normal ACTH-levels it can be concluded, that the biological halflife of endogenous ACTH is longer than 4 min. From the data of patients with elevated ACTH-levels a halflife of approximately 40 min and a mean ACTH-secretion of approx. 100 units per day could be calculated

    AXL Expression on Homeostatic Resident Liver Macrophages Is Reduced in Cirrhosis Following GAS6 Production by Hepatic Stellate Cells.

    Get PDF
    BACKGROUND & AIMS: AXL and MERTK expression on circulating monocytes modulated immune responses in patients with cirrhosis (CD14+HLA-DR+AXL+) and acute-on-chronic liver failure (CD14+MERTK+). AXL expression involved enhanced efferocytosis, sustained phagocytosis, but reduced tumor necrosis factor-α/interleukin-6 production and T-cell activation, suggesting a homeostatic function. Axl was expressed on murine airway in tissues contacting the external environment, but not interstitial lung- and tissue-resident synovial lining macrophages. We assessed AXL expression on tissue macrophages in patients with cirrhosis. METHODS: Using multiplexed immunofluorescence we compared AXL expression in liver biopsies in cirrhosis (n = 22), chronic liver disease (n = 8), non-cirrhotic portal hypertension (n = 4), and healthy controls (n = 4). Phenotype and function of isolated primary human liver macrophages were characterized by flow cytometry (cirrhosis, n = 11; control, n = 14) ex vivo. Also, AXL expression was assessed on peritoneal (n = 29) and gut macrophages (n = 16) from cirrhotic patients. Regulation of AXL expression was analyzed in vitro and ex vivo using primary hepatic stellate cells (HSCs), LX-2 cells, and GAS6 in co-culture experiments. RESULTS: AXL was expressed on resident (CD68+) but not tissue-infiltrating (MAC387+) liver macrophages, hepatocytes, HSCs, or sinusoidal endothelial cells. Prevalence of hepatic CD68+AXL+ cells significantly decreased with cirrhosis progression: (healthy, 90.2%; Child-Pugh A, 76.1%; Child-Pugh B, 64.5%; and Child-Pugh C, 18.7%; all P < .05) and negatively correlated with Model for End-Stage Liver Disease and C-reactive protein (all P < .05). AXL-expressing hepatic macrophages were CD68highHLA-DRhighCD16highCD206high. AXL expression also decreased on gut and peritoneal macrophages from cirrhotic patients but increased in regional lymph nodes. GAS6, enriched in the cirrhotic liver, appeared to be secreted by HSCs and down-regulate AXL in vitro. CONCLUSIONS: Decreased AXL expression on resident liver macrophages in advanced cirrhosis, potentially in response to activated HSCs-secreted GAS6, suggests a role for AXL in the regulation of hepatic immune homeostasis
    corecore