309 research outputs found

    Atomic Hydrogen and Star Formation in the Bridge/Ring Interacting Galaxy Pair NGC 7714/7715 (Arp 284)

    Get PDF
    We present high spatial resolution 21 cm HI maps of the interacting galaxy pair NGC 7714/7715. We detect a massive (2 x 10**9 M(sun)) HI bridge connecting the galaxies that is parallel to but offset from the stellar bridge. A chain of HII regions traces the gaseous bridge, with H-alpha peaks near but not on the HI maxima. An HI tidal tail is also detected to the east of the smaller galaxy NGC 7715, similarly offset from a stellar tail. The strong partial stellar ring on the eastern side of NGC 7714 has no HI counterpart, but on the opposite side of NGC 7714 there is a 10**9 M(sun) HI loop 11 kpc in radius. Within the NGC 7714 disk, clumpy HI gas is observed associated with star formation regions. Redshifted HI absorption is detected towards the starburst nucleus. We compare the observed morphology and gas kinematics with gas dynamical models in which a low-mass companion has an off-center prograde collision with the outer disk of a larger galaxy. These simulations suggest that the bridge in NGC 7714/7715 is a hybrid between bridges seen in systems like M51 and the purely gaseous `splash' bridges found in ring galaxies like the Cartwheel. The offset between the stars and gas in the bridge may be due to dissipative cloud-cloud collisions occuring during the impact of the two gaseous disks.Comment: 31 pages, Latex, 11 figures, to be published in the July 10, 1997 issue of the Astrophysical Journa

    Mapping IR Enhancements in Closely Interacting Spiral-Spiral Pairs. I. ISO~CAM and ISO~SWS Observations

    Full text link
    Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission. The goal is to study the star formation distribution in CLO pairs, with special emphasis on the role of 'overlap starbursts'. Observations were made with the Infrared Space Observatory (ISO) using the CAM and SWS instruments. The ISO~CAM maps, tracing the MIR emission of warm dust heated by young massive stars, are compared to new ground based Hα\alpha and R-band images. We identify three possible subgroups in the sample, classified according to the star formation morphology: (1) advanced mergers (Arp~157, Arp~244 and Arp~299), (2) severely disturbed systems (Arp~81 and Arp~278), and (3) less disturbed systems (Arp~276, KPG 347 and KPG 426). Localized starbursts are detected in the overlap regions in all five pairs of subgroups (1) and (2), suggesting that they are a common property in colliding systems. Except for Arp~244, the 'overlap starburst' is usually fainter than the major nuclear starburst in CLO pairs. Star formation in 'less disturbed systems' is often distributed throughout the disks of both galaxies with no 'overlap starburst' detected in any of them. These systems also show less enhanced FIR emission, suggesting that they are in an earlier interaction stage than pairs of the other two subgroups where the direct disk collisions have probably not yet occurred.Comment: 27 pages text, 4 JPEG figures, 3 PS figures. To be accepted by ApJ. High quality figures (included in a PS file of the paper) can be found in http://spider.ipac.caltech.edu/staff/cxu/papers/ss_iso.ps.g

    An unidentified TeV source in the vicinity of Cygnus OB2

    Get PDF
    Deep observation (∼113 hrs) of the Cygnus region at TeV energies using the HEGRA stereoscopic system of air Čerenkov telescopes has serendipitously revealed a signal positionally inside the core of the OB association Cygnus OB2, at the edge of the 95% error circle of the EGRET source 3EG J2033+4118, and ∼0.5° north of Cyg X-3. The source centre of gravity is RA αJ2000: 20hr32m07s± 9.2stats±2.2syss, Dec δJ2000: +41°30′30″2.0stat±0.4′sys. The source is steady, has a post-trial significance of +4.6σ, indication for extension with radius 5.6′ at the ∼3σ level, and has a differential power-law flux with hard photon index of - 1.9 ± 0.3stat ± 0.3sys. The integral flux above 1 TeV amounts ∼3% that of the Crab. No counterpart for the TeV source at other wavelengths is presently identified, and its extension would disfavour an exclusive pulsar or AGN origin. If associated with Cygnus OB2, this dense concentration of young, massive stars provides an environment conducive to multi-TeV particle acceleration and likely subsequent interaction with a nearby gas cloud. Alternatively, one could envisage γ-ray production via a jet-driven termination shock.F. A. Aharonian, ... G. P. Rowell, ... [et al

    Examining the Seyfert - Starburst Connection with Arcsecond Resolution Radio Continuum Observations

    Get PDF
    We compare the arcsecond-scale circumnuclear radio continuum properties between five Seyfert and five starburst galaxies, concentrating on the search for any structures that could imply a spatial or causal connection between the nuclear activity and a circumnuclear starburst ring. No evidence is found in the radio emission for a link between the triggering or feeding of nuclear activity and the properties of circumnuclear star formation. Conversely, there is no clear evidence of nuclear outflows or jets triggering activity in the circumnuclear rings of star formation. Interestingly, the difference in the angle between the apparent orientation of the most elongated radio emission and the orientation of the major axis of the galaxy is on average larger in Seyferts than in starburst galaxies, and Seyferts appear to have a larger physical size scale of the circumnuclear radio continuum emission. The concentration, asymmetry, and clumpiness parameters of radio continuum emission in Seyferts and starbursts are comparable, as are the radial profiles of radio continuum and near-infrared line emission. The circumnuclear star formation and supernova rates do not depend on the level of nuclear activity. The radio emission usually traces the near-infrared Br-gamma and H2 1-0 S(1) line emission on large spatial scales, but locally their distributions are different, most likely because of the effects of varying local magnetic fields and dust absorption and scattering.Comment: 21 pages, 10 figures. Accepted for publication in the Astronomical Journa

    Models of the Morphology, Kinematics, and Star Formation History of the Prototypical Collisional Starburst System: NGC 7714/7715 = Arp 284

    Get PDF
    (abridged) We present new N-body, hydrodynamical simulations of the interaction between the starburst galaxy NGC 7714 and its post-starburst companion NGC 7715, focusing on the formation of the collisional features, including: 1) the gas-rich star forming bridge, 2) the large gaseous loop (and stellar tails) to the west of the system, 3) the very extended HI tail to the west and north of NGC 7714, and 4) the partial stellar ring in NGC 7714. Our simulations confirm the results of earlier work that an off-center inclined collision between two disk galaxies is almost certainly responsible for the peculiar morphologies of this system. However, we have explored a wider set of initial galaxy and collisional encounter parameters than previously, and have found a relatively narrow range of parameters that reproduce all the major morphologies of this system. The simulations suggest specific mechanisms for the development of several unusual structures. We find that the complex gas bridge has up to four distinct components, with gas contributed from two sides of NGC 7715, as well as from NGC 7714. The observed gas-star offset in this bridge is accounted for in the simulations by the dissipative evolution of the gas. The models also indicate that the low surface brightness HI tail to the far west of NGC 7714 is the end of the NGC 7715 countertail, curved behind the two galaxies. Spectral evolutionary models of the NGC 7714 core by Lan\c{c}on et al. suggest the possibility of multiple starbursts in the last 300 Myr. Our hydrodynamic models suggest that bursts could be triggered by induced ring-like waves, and a post-collision buildup of gas in the core of the galaxy.Comment: 24 pages, 20 figures, accepted for ApJ Supp

    New Observations of Extra-Disk Molecular Gas in Interacting Galaxy Systems, Including a Two-Component System in Stephan's Quintet

    Get PDF
    We present new CO (1 - 0) observations of eleven extragalactic tails and bridges in nine interacting galaxy systems, almost doubling the number of such features with sensitive CO measurements. Eight of these eleven features were undetected in CO to very low CO/HI limits, with the most extreme case being the NGC 7714/5 bridge. This bridge contains luminous H II regions and has a very high HI column density (1.6 X 10^21 cm^-2 in the 55" CO beam), yet was undetected in CO to rms T(R)* = 2.4 mK. The HI column density is higher than standard H2 and CO self-shielding limits for solar-metallicity gas, suggesting that the gas in this bridge is metal-poor and has an enhanced N(H2)/I(CO) ratio compared to the Galactic value. Only one of the eleven features in our sample was unambiguously detected in CO, a luminous HI-rich star formation region near an optical tail in the compact group Stephan's Quintet. We detect CO at two widely separated velocities in this feature, at ~6000 km/s and ~6700 km/s. Both of these components have HI and H-alpha counterparts. These velocities correspond to those of galaxies in the group, suggesting that this gas is material that has been removed from two galaxies in the group. The CO/HI/H-alpha ratios for both components are similar to global values for spiral galaxies.Comment: 39 pages, Latex, 15 figures, Astronomical Journal, in pres

    Multiwavelength study of the starburst galaxy NGC7714. I: Ultraviolet-Optical spectroscopy

    Full text link
    We have studied the physical conditions in the central 300 pc of the proto-typical starburst galaxy NGC 7714. Our analysis is based on ultraviolet spectroscopy with the HST+GHRS and ground-based optical observations.The data are interpreted using evolutionary models optimized for young starburst regions. The massive stellar population is derived in a self-consistent way using the continuum and stellar absorption lines in the ultraviolet and the nebular emission line optical spectrum. The central starburst has an age of about 4.5 Myr, with little evidence for an age spread. Wolf-Rayet features at the ultraviolet indicates a stellar population of \sim 2000 Wolf-Rayet stars. The overall properties of the newly formed stars are quite similar to those derived, e.g., in 30 Doradus. A standard Salpeter IMF is consistent with all observational constraints. We find evidence for spatial structure within the central 300 pc sampled. Therefore it is unlikely that the nucleus of NGC 7714 hosts a single star cluster exceeding the properties of other known clusters. Contrary to previous suggestions, we find no evidence for a nuclear supernova rate that would significantly exceed the total disk-integrated rate. About one supernova event per century is predicted.Comment: 19 pages, 9 figures in a tar file. Accepted for publication in ApJ, 1999, March, issue 51

    The Structure of IR Luminous Galaxies at 100 Microns

    Get PDF
    We have observed twenty two galaxies at 100 microns with the Kuiper Airborne Observatory in order to determine the size of their FIR emitting regions. Most of these galaxies are luminous far-infrared sources, with L_FIR > 10^11 L_sun. This data constitutes the highest spatial resolution ever achieved on luminous galaxies in the far infrared. Our data includes direct measurements of the spatial structure of the sources, in which we look for departures from point source profiles. Additionally, comparison of our small beam 100 micron fluxes with the large beam IRAS fluxes shows how much flux falls beyond our detectors but within the IRAS beam. Several sources with point- like cores show evidence for such a net flux deficit. We clearly resolved six of these galaxies at 100 microns and have some evidence for extension in seven others. Those galaxies which we have resolved can have little of their 100 micron flux directly emitted by a point-like active galactic nucleus (AGN). Dust heated to ~40 K by recent bursts of non-nuclear star formation provides the best explanation for their extreme FIR luminosity. In a few cases, heating of an extended region by a compact central source is also a plausible option. Assuming the FIR emission we see is from dust, we also use the sizes we derive to find the dust temperatures and optical depths at 100 microns which we translate into an effective visual extinction through the galaxy. Our work shows that studies of the far infrared structure of luminous infrared galaxies is clearly within the capabilities of new generation far infrared instrumentation, such as SOFIA and SIRTF.Comment: 8 tables, 23 figure

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa
    corecore