93 research outputs found

    Verification of Model Transformations

    Get PDF
    With the increasing use of automatic transformations of models, the correctness of these transformations becomes an increasingly important issue. Especially for model transformation generally defined using abstract description techniques like graph transformations or declarative relational specifications, however, establishing the soundness of those transformations by test-based approaches is not straight-forward. We show how formal verification of soundness conditions over such declarative relational style transformations can be performed using an interactive theorem prover. The relational style allows a direct translation of transformations as well as associated soundness conditions into corresponding axioms and theorems. Using the Isabelle theorem prover, the approach is demonstrated for a refactoring transformation and a connectedness soundness condition

    Special Section on Formal Methods for Industrial Critical Systems (Selected Papers from FMICS'11)

    Get PDF
    International audienceThis section contains extended versions of selected papers from the 16th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'11)

    An Energy Management Service for the Smart Office

    Get PDF
    The evolution of the electricity grid towards the smart grid paradigm is fostering the integration of distributed renewable energy sources in smart buildings: a combination of local power generation, battery storage and controllable loads can greatly increase the energetic self-sufficiency of a smart building, enabling it to maximize the self-consumption of photovoltaic electricity and to participate in the energy market, thus taking advantage of time-variable tariffs to achieve economic savings. This paper proposes an energy management infrastructure specifically tailored for a smart office building, which relies on measured data and on forecasting algorithms to predict the future patterns of both local energy generation and power loads. The performance is compared to the optimal energy usage scheduling, which would be obtained assuming the exact knowledge of the future energy production and consumption trends, showing gaps below 10% with respect to the optimum

    Handling non-functional requirements in Model-Driven Development: an ongoing industrial survey

    Get PDF
    Model-Driven Development (MDD) is no longer a novel development paradigm. It has become mature from a research perspective and recent studies show its adoption in industry. Still, some issues remain a challenge. Among them, we are interested in the treatment of non-functional requirements (NFRs) in MDD processes. Very few MDD approaches have been reported to deal with NFRs (and they do it in a limited way). However, it is clear that NFRs need to be considered somehow in the final product of the MDD process. To better understand how NFRs are integrated into the existing MDD approaches, we have initiated the NFR4MDD project, a multi-national empirical study, based on interviews with companies working on MDD projects. Our project aims at surveying the state of the practice for this topic. In this paper, we summarize our research protocol and present the current status of our study. The discussion will focus on the peculiarities of our study’s context and organization involving about 20 researchers from 8 European countriesPeer ReviewedPostprint (author's final draft
    corecore