9,281 research outputs found

    The composition of meteoroids impacting LDEF

    Get PDF
    So far we have completed an initial scanning electron microscopy (SEM) survey of craters on the exterior of the Long Duration Exposure Facility (LDEF) in the 100 micron to 1mm size range and done some quantitative analysis. In typical craters, the residue appears to be a mixture of glass and FeNi and sulfide beads with an overall chondritic elemental composition. In less than 10 percent of the craters, there is a substantial amount of meteoroid debris that also contains unmelted mineral grains. The relatively high abundance of forsterite and enststite among these irregular grains suggests that a high melting point probably plays a role in surviving impact without melting

    Eruption of a Kink-Unstable Filament in Active Region NOAA 10696

    Full text link
    We present rapid-cadence Transition Region And Coronal Explorer (TRACE) observations which show evidence of a filament eruption from active region NOAA 10696, accompanied by an X2.5 flare, on 2004 November 10. The eruptive filament, which manifests as a fast coronal mass ejection some minutes later, rises as a kinking structure with an apparently exponential growth of height within TRACE's field of view. We compare the characteristics of this filament eruption with MHD numerical simulations of a kink-unstable magnetic flux rope, finding excellent qualitative agreement. We suggest that, while tether weakening by breakout-like quadrupolar reconnection may be the release mechanism for the previously confined flux rope, the driver of the expansion is most likely the MHD helical kink instability.Comment: Accepted by ApJ Letters. 4 figures (Fig. 3 in two parts). For MPEG files associated with Figure 1, see: http://www.mssl.ucl.ac.uk/~drw/papers/kink/ktrace.mpg http://www.mssl.ucl.ac.uk/~drw/papers/kink/kmdi.mpg http://www.mssl.ucl.ac.uk/~drw/papers/kink/ksimu.mp

    Fingerprints of Random Flows?

    Full text link
    We consider the patterns formed by small rod-like objects advected by a random flow in two dimensions. An exact solution indicates that their direction field is non-singular. However, we find from simulations that the direction field of the rods does appear to exhibit singularities. First, ` scar lines' emerge where the rods abruptly change direction by π\pi. Later, these scar lines become so narrow that they ` heal over' and disappear, but their ends remain as point singularities, which are of the same type as those seen in fingerprints. We give a theoretical explanation for these observations.Comment: 21 pages, 11 figure

    Scaling of the Fano effect of the in-plane Fe-As phonon and the superconducting critical temperature in Ba1−x_{1-x}Kx_{x}Fe2_{2}As2_{2}

    Full text link
    By means of infrared spectroscopy we determine the temperature-doping phase diagram of the Fano effect for the in-plane Fe-As stretching mode in Ba1−x_{1-x}Kx_{x}Fe2_{2}As2_{2}. The Fano parameter 1/q21/q^2, which is a measure of the phonon coupling to the electronic particle-hole continuum, shows a remarkable sensitivity to the magnetic/structural orderings at low temperatures. More strikingly, at elevated temperatures in the paramagnetic/tetragonal state we find a linear correlation between 1/q21/q^2 and the superconducting critical temperature TcT_c. Based on theoretical calculations and symmetry considerations, we identify the relevant interband transitions that are coupled to the Fe-As mode. In particular, we show that a sizable xyxy orbital component at the Fermi level is fundamental for the Fano effect and possibly also for the superconducting pairing.Comment: Supplemental materials are available upon reques

    Superconductivity and charge carrier localization in ultrathin La1.85Sr0.15CuO4/La2CuO4\mathbf{{La_{1.85}Sr_{0.15}CuO_4}/{La_2CuO_4}} bilayers

    Get PDF
    La1.85Sr0.15CuO4\mathrm{La_{1.85}Sr_{0.15}CuO_4}/La2CuO4\mathrm{La_2CuO_4} (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15\_N/LCO\_M]) were grown on (001)-oriented {\slao} (SLAO) substrates with pulsed laser deposition (PLD). X-ray diffraction and reciprocal space map (RSM) studies confirmed the epitaxial growth of the bilayers and showed that a [LSCO15\_2/LCO\_2] bilayer is fully strained, whereas a [LSCO15\_2/LCO\_7] bilayer is already partially relaxed. The \textit{in situ} monitoring of the growth with reflection high energy electron diffraction (RHEED) revealed that the gas environment during deposition has a surprisingly strong effect on the growth mode and thus on the amount of disorder in the first UC of LSCO15 (or the first two monolayers of LSCO15 containing one CuO2\mathrm{CuO_2} plane each). For samples grown in pure N2O\mathrm{N_2O} gas (growth type-B), the first LSCO15 UC next to the SLAO substrate is strongly disordered. This disorder is strongly reduced if the growth is performed in a mixture of N2O\mathrm{N_2O} and O2\mathrm{O_2} gas (growth type-A). Electric transport measurements confirmed that the first UC of LSCO15 next to the SLAO substrate is highly resistive and shows no sign of superconductivity for growth type-B, whereas it is superconducting for growth type-A. Furthermore, we found, rather surprisingly, that the conductivity of the LSCO15 UC next to the LCO capping layer strongly depends on the thickness of the latter. A LCO capping layer with 7~UCs leads to a strong localization of the charge carriers in the adjacent LSCO15 UC and suppresses superconductivity. The magneto-transport data suggest a similarity with the case of weakly hole doped LSCO single crystals that are in a so-called {"{cluster-spin-glass state}"

    Thermodynamic properties of the periodic Anderson model:X-boson treatment

    Full text link
    We study the specific dependence of the periodic Anderson Model (PAM) in the limit of U=∞U=\infty employing the X-boson treatment in two fifferent regimes of the PAM: the heavy fermion Kondo (HF-K) and the heavy fermion local magnetic regime (HF-LMM). We obtain a multiple peak structure for the specific heat in agreement with experimental results as well as the increase of the electronic effective mass at low temperatures associated with the HF-K regime. The entropy per site at low T tends to zero in the HF-K regime, corresponding to a singlet ground state, and it tends to kBln(2)k_{B}ln(2) in the HF-LMM, corresponding to a doublet ground state at each site. The linear coefficient γ(T)=Cv/T\gamma(T)=C_{v}/T of the specific heat qualitatively agrees with the experimental results obtained for differents materials in the two regimes considered here.Comment: 9 pages, 14 figure

    Intrinsic Josephson Effects in the Magnetic Superconductor RuSr2GdCu2O8

    Full text link
    We have measured interlayer current transport in small sized RuSr2GdCu2O8 single crystals. We find a clear intrinsic Josephson effect showing that the material acts as a natural superconductor-insulator-ferromagnet-insulator-superconductor superlattice. So far, we detected no unconventional behavior due to the magnetism of the RuO2 layers.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Abstract involutions of algebraic groups and of Kac-Moody groups

    Full text link
    Based on the second author's thesis in this article we provide a uniform treatment of abstract involutions of algebraic groups and of Kac-Moody groups using twin buildings, RGD systems, and twisted involutions of Coxeter groups. Notably we simultaneously generalize the double coset decompositions established by Springer and by Helminck-Wang for algebraic groups and by Kac-Wang for certain Kac-Moody groups, we analyze the filtration studied by Devillers-Muhlherr in the context of arbitrary involutions, and we answer a structural question on the combinatorics of involutions of twin buildings raised by Bennett-Gramlich-Hoffman-Shpectorov

    Phonon anomalies and electron-phonon interaction in RuSr_2GdCu_2O_8 ferromagnetic superconductor: Evidence from infrared conductivity

    Full text link
    Critical behavior of the infrared reflectivity of RuSr_2GdCu_2O_8 ceramics is observed near the superconducting T_{SC} = 45 K and magnetic T_M = 133 K transition temperatures. The optical conductivity reveals the typical features of the c-axis optical conductivity of strongly underdoped multilayer superconducting cuprates. The transformation of the Cu-O bending mode at 288 cm^{-1} to a broad absorption peak at the temperatures between T^* = 90 K and T_{SC} is clearly observed, and is accompanied by the suppression of spectral weight at low frequencies. The correlated shifts to lower frequencies of the Ru-related phonon mode at 190 cm^{-1} and the mid-IR band at 4800 cm^{-1} on decreasing temperature below T_M are observed. It provides experimental evidence in favor of strong electron-phonon coupling of the charge carriers in the Ru-O layers which critically depends on the Ru core spin alignment. The underdoped character of the superconductor is explained by strong hole depletion of the CuO_2 planes caused by the charge carrier self-trapping at the Ru moments.Comment: 11 pages incl. 5 figures, submitted to PR
    • …
    corecore