2,700 research outputs found

    Aging of rotational diffusion in colloidal gels and glasses

    Get PDF
    We study the rotational diffusion of aging Laponite suspensions for a wide range of concentrations using depolarized dynamic light scattering. The measured orientational correlation functions undergo an ergodic to non-ergodic transition that is characterized by a concentration-dependent ergodicity-breaking time. We find that the relaxation times associated with rotational degree of freedom as a function of waiting time, when scaled with their ergodicity-breaking time, collapse on two distinct master curves. These master curves are similar to those previously found for the translational dynamics; The two different classes of behavior were attributed to colloidal gels and glasses. Therefore, the aging dynamics of rotational degree of freedom provides another signature of the distinct dynamical behavior of colloidal gels and glasses.Comment: 12 pages, 7 figure

    Aging after shear rejuvenation in a soft glassy colloidal suspension: evidence for two different regimes

    Full text link
    The aging dynamics after shear rejuvenation in a glassy, charged clay suspension have been investigated through dynamic light scattering (DLS). Two different aging regimes are observed: one is attained if the sample is rejuvenated before its gelation and one after the rejuvenation of the gelled sample. In the first regime, the application of shear fully rejuvenates the sample, as the system dynamics soon after shear cessation follow the same aging evolution characteristic of normal aging. In the second regime, aging proceeds very fast after shear rejuvenation, and classical DLS cannot be used. An original protocol to measure an ensemble averaged intensity correlation function is proposed and its consistency with classical DLS is verified. The fast aging dynamics of rejuvenated gelled samples exhibit a power law dependence of the slow relaxation time on the waiting time.Comment: 7 pages, 6 figure

    Quantized time correlation function approach to non-adiabatic decay rates in condensed phase: Application to solvated electrons in water and methanol

    Get PDF
    A new, alternative form of the golden rule formula defining the non-adiabatic transition rate between two quantum states in condensed phase is presented. The formula involves the quantum time correlation function of the energy gap, of the non-adiabatic coupling, and their cross terms. Those quantities can be inferred from their classical counterparts, determined via MD simulations. The formalism is applied to the problem of the non-adiabatic relaxation of an equilibrated p-electron in water and methanol. We find that, in both solvent, the relaxation is induced by the coupling to the vibrational modes and the quantum effects modify the rate by a factor of 2-10 depending on the quantization procedure applied. The resulting p-state lifetime for a hypothetical equilibrium excited state appears extremely short, in the sub-100 fs regime. Although this result is in contrast with all previous theoretical predictions, we also illustrate that the lifetimes computed here are very sensitive to the simulated electronic quantum gap and to the strongly correlated non-adiabatic coupling

    Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering

    Full text link
    We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this non-ergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film.Comment: to appear in Phys. Rev. Let

    Length scale dependence of dynamical heterogeneity in a colloidal fractal gel

    Full text link
    We use time-resolved dynamic light scattering to investigate the slow dynamics of a colloidal gel. The final decay of the average intensity autocorrelation function is well described by g_2(q,τ)1exp[(τ/τ_f)p]g\_2(q,\tau)-1 \sim \exp[-(\tau/\tau\_\mathrm{f})^p], with τ_fq1\tau\_\mathrm{f} \sim q^{-1} and pp decreasing from 1.5 to 1 with increasing qq. We show that the dynamics is not due to a continuous ballistic process, as proposed in previous works, but rather to rare, intermittent rearrangements. We quantify the dynamical fluctuations resulting from intermittency by means of the variance χ(τ,q)\chi(\tau,q) of the instantaneous autocorrelation function, the analogous of the dynamical susceptibility χ_4\chi\_4 studied in glass formers. The amplitude of χ\chi is found to grow linearly with qq. We propose a simple --yet general-- model of intermittent dynamics that accounts for the qq dependence of both the average correlation functions and χ\chi.Comment: Revised and improved, to appear in Europhys. Let

    Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

    Get PDF
    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes

    Microscopic dynamics of thin hard rods

    Full text link
    Based on the collision rules for hard needles we derive a hydrodynamic equation that determines the coupled translational and rotational dynamics of a tagged thin rod in an ensemble of identical rods. Specifically, based on a Pseudo-Liouville operator for binary collisions between rods, the Mori-Zwanzig projection formalism is used to derive a continued fraction representation for the correlation function of the tagged particle's density, specifying its position and orientation. Truncation of the continued fraction gives rise to a generalised Enskog equation, which can be compared to the phenomenological Perrin equation for anisotropic diffusion. Only for sufficiently large density do we observe anisotropic diffusion, as indicated by an anisotropic mean square displacement, growing linearly with time. For lower densities, the Perrin equation is shown to be an insufficient hydrodynamic description for hard needles interacting via binary collisions. We compare our results to simulations and find excellent quantitative agreement for low densities and qualtitative agreement for higher densities.Comment: 21 pages, 6 figures, v2: clarifications and improved readabilit

    The Rayleigh-Brillouin Spectrum in Special Relativistic Hydrodynamics

    Full text link
    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to non-equilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic non-equilibrium thermodynamics. The answer will clearly require deeper examination of this problem.Comment: 13 pages, no figures. Accepted for publication in Phys. Rev.

    Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility

    Full text link
    We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies
    corecore