35 research outputs found

    Serum Response Factor Mediated Gene Activity in Physiological and Pathological Processes of Neuronal Motility

    Get PDF
    In recent years, the transcription factor serum response factor (SRF) was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance, and, e.g., synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility, and neurite branching. SRF teams up with myocardin related transcription factors (MRTFs) and ternary complex factors (TCFs) to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG) response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration

    The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration

    Get PDF
    AbstractFingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF.In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes

    Serum response factor modulates neuron survival during peripheral axon injury

    Get PDF
    BACKGROUND: The transcription factor SRF (serum response factor) mediates neuronal survival in vitro. However, data available so far suggest that SRF is largely dispensable for neuron survival during physiological brain function. FINDINGS: Here, we demonstrate that upon neuronal injury, that is facial nerve transection, constitutively-active SRF-VP16 enhances motorneuron survival. SRF-VP16 suppressed active caspase 3 abundance in vitro and enhanced neuron survival upon camptothecin induced apoptosis. Following nerve fiber injury in vitro, SRF-VP16 improved survival of neurons and re-growth of severed neurites. Further, SRF-VP16 enhanced immune responses (that is microglia and T cell activation) associated with neuronal injury in vivo. Genome-wide transcriptomics identified target genes associated with axonal injury and modulated by SRF-VP16. CONCLUSION: In sum, this is a first report describing a neuronal injury-related survival function for SRF

    Three-Dimensional In vivo Magnetic Resonance Imaging (MRI) of Mouse Facial Nerve Regeneration

    Get PDF
    MRI (magnetic resonance imaging) is an indispensable tool in the diagnosis of centrals nervous system (CNS) disorders such as spinal cord injury and multiple sclerosis (MS). In contrast, diagnosis of peripheral nerve injuries largely depends on clinical and electrophysiological parameters. Thus, currently MRI is not regularly used which in part is due to small nerve calibers and isointensity with surrounding tissue such as muscles. In this study we performed translational MRI research in mice to establish a novel MRI protocol visualizing intact and injured peripheral nerves in a non-invasive manner without contrast agents. With this protocol we were able to image even very small nerves and nerve branches such as the mouse facial nerve (diameter 100–300 μm) at highest spatial resolution. Analysis was performed in the same animal in a longitudinal study spanning 3 weeks after injury. Nerve injury caused hyperintense signal in T2-weighted images and an increase in nerve size of the proximal and distal nerve stumps were observed. Further hyperintense signal was observed in a bulb-like structure in the lesion site, which correlated histologically with the production of fibrotic tissue and immune cell infiltration. The longitudinal MR representation of the facial nerve lesions correlated well with physiological recovery of nerve function by quantifying whisker movement. In summary, we provide a novel protocol in rodents allowing for non-invasive, non-contrast agent enhanced, high-resolution MR imaging of small peripheral nerves longitudinally over several weeks. This protocol might further help to establish MRI as an important diagnostic and post-surgery follow-up tool to monitor peripheral nerve injuries in humans

    Acute stress modulates the outcome of traumatic brain injury-associated gene expression and behavioral responses.

    Get PDF
    Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs

    The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility

    Get PDF
    Cyclin-dependent kinases (Cdks) fulfill key functions in many cellular processes, including cell cycle progression and cytoskeletal dynamics. A limited number of Cdk substrates have been identified with few demonstrated to be regulated by Cdk-dependent phosphorylation. We identify on protein expression arrays novel cyclin E–Cdk2 substrates, including SIRT2, a member of the Sirtuin family of NAD+-dependent deacetylases that targets α-tubulin. We define Ser-331 as the site phosphorylated by cyclin E–Cdk2, cyclin A–Cdk2, and p35–Cdk5 both in vitro and in cells. Importantly, phosphorylation at Ser-331 inhibits the catalytic activity of SIRT2. Gain- and loss-of-function studies demonstrate that SIRT2 interfered with cell adhesion and cell migration. In postmitotic hippocampal neurons, neurite outgrowth and growth cone collapse are inhibited by SIRT2. The effects provoked by SIRT2, but not those of a nonphosphorylatable mutant, are antagonized by Cdk-dependent phosphorylation. Collectively, our findings identify a posttranslational mechanism that controls SIRT2 function, and they provide evidence for a novel regulatory circuitry involving Cdks, SIRT2, and microtubules

    Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression

    Get PDF
    During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dynamics and neurite branching of primary neurons. We show that ephrin-A5 antagonized this BDNF-evoked neuronal motility. BDNF increased ERK phosphorylation (P-ERK) and nuclear ERK entry. Ephrin-A5 suppressed BDNF-induced ERK activity and might sequester P-ERK in the cytoplasm. Neurotrophins are well established stimulators of a neuronal immediate early gene (IEG) response. This is confirmed in this study by e.g. c-fos, Egr1 and Arc upregulation upon BDNF application. This BDNF-evoked IEG response required the transcription factor SRF (serum response factor). Notably, ephrin-A5 suppressed a BDNF-evoked neuronal IEG response, suggesting a role of Eph receptors in modulating gene expression. In opposite to IEGs, long-term ephrin-A5 application induced cytoskeletal gene expression of tropomyosin and actinin. To uncover specific Eph receptors mediating ephrin-As impact on neurotrophin signaling, EphA7 deficient mice were analyzed. In EphA7 deficient neurons alterations in growth cone morphology were observed. However, ephrin-A5 still counteracted neurotrophin signaling suggesting that EphA7 is not required for ephrin and BDNF crosstalk. In sum, our data suggest an interaction of ephrin-As and neurotrophin signaling pathways converging at ERK signaling and nuclear gene activity. As ephrins are involved in development and function of many organs, such modulation of receptor tyrosine kinase signaling and gene expression by Ephs might not be limited to the nervous system

    Las novedades en la formación profesional y las dificultades de su fundamentación empírica

    No full text
    corecore