2,450 research outputs found

    Exact Solution for Bulk-Edge Coupling in the Non-Abelian ν=5/2\nu=5/2 Quantum Hall Interferometer

    Full text link
    It has been predicted that the phase sensitive part of the current through a non-abelian ν=5/2\nu = 5/2 quantum Hall Fabry-Perot interferometer will depend on the number of localized charged e/4e/4 quasiparticles (QPs) inside the interferometer cell. In the limit where all QPs are far from the edge, the leading contribution to the interference current is predicted to be absent if the number of enclosed QPs is odd and present otherwise, as a consequence of the non-abelian QP statistics. The situation is more complicated, however, if a localized QP is close enough to the boundary so that it can exchange a Majorana fermion with the edge via a tunneling process. Here, we derive an exact solution for the dependence of the interference current on the coupling strength for this tunneling process, and confirm a previous prediction that for sufficiently strong coupling, the localized QP is effectively incorporated in the edge and no longer affects the interference pattern. We confirm that the dimensionless coupling strength can be tuned by the source-drain voltage, and we find that not only does the magnitude of the even-odd effect change with the strength of bulk-edge coupling, but in addition, there is a universal shift in the interference phase as a function of coupling strength. Some implications for experiments are discussed at the end.Comment: 12 pages, 3 figure

    Numerical stability of the AA evolution system compared to the ADM and BSSN systems

    Full text link
    We explore the numerical stability properties of an evolution system suggested by Alekseenko and Arnold. We examine its behavior on a set of standardized testbeds, and we evolve a single black hole with different gauges. Based on a comparison with two other evolution systems with well-known properties, we discuss some of the strengths and limitations of such simple tests in predicting numerical stability in general.Comment: 16 pages, 12 figure

    Heisenberg picture operators in the quantum state diffusion model

    Full text link
    A stochastic simulation algorithm for the computation of multitime correlation functions which is based on the quantum state diffusion model of open systems is developed. The crucial point of the proposed scheme is a suitable extension of the quantum master equation to a doubled Hilbert space which is then unraveled by a stochastic differential equation.Comment: LaTeX2E, 6 pages, 3 figures, uses iopar

    Zipf law in the popularity distribution of chess openings

    Full text link
    We perform a quantitative analysis of extensive chess databases and show that the frequencies of opening moves are distributed according to a power-law with an exponent that increases linearly with the game depth, whereas the pooled distribution of all opening weights follows Zipf's law with universal exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of hierarchical fragmentation the scaling is truly universal and independent of a particular generating mechanism. Our findings are of relevance in general processes with composite decisions.Comment: 5 pages, 4 figure

    Dynamics of Phase Transitions: The 3D 3-state Potts model

    Full text link
    In studies of the QCD deconfining phase transition or cross-over by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. In this paper we extend our previous study of Glauber dynamics of 2D Potts models to the 3D 3-state Potts model, which serves as an effective model for some QCD properties. We investigate the linear theory of spinodal decomposition in some detail. It describes the early time evolution of the 3D model under a quench from the disordered into the ordered phase well, but fails in 2D. Further, the quench leads to competing vacuum domains, which are difficult to equilibrate, even in the presence of a small external magnetic field. From our hysteresis study we find, as before, a dynamics dominated by spinodal decomposition. There is evidence that some effects survive in the case of a cross-over. But the infinite volume extrapolation is difficult to control, even with lattices as large as 1203120^3.Comment: 12 pages; added references, corrected typo

    Spin-Boson Hamiltonian and Optical Absorption of Molecular Dimers

    Get PDF
    An analysis of the eigenstates of a symmetry-broken spin-boson Hamiltonian is performed by computing Bloch and Husimi projections. The eigenstate analysis is combined with the calculation of absorption bands of asymmetric dimer configurations constituted by monomers with nonidentical excitation energies and optical transition matrix elements. Absorption bands with regular and irregular fine structures are obtained and related to the transition from the coexistence to a mixing of adiabatic branches in the spectrum. It is shown that correlations between spin states allow for an interpolation between absorption bands for different optical asymmetries.Comment: 15 pages, revTeX, 8 figures, accepted for publication in Phys. Rev.

    Two-Loop Sudakov Form Factor in a Theory with Mass Gap

    Full text link
    The two-loop Sudakov form factor is computed in a U(1) model with a massive gauge boson and a U(1)Ă—U(1)U(1)\times U(1) model with mass gap. We analyze the result in the context of hard and infrared evolution equations and establish a matching procedure which relates the theories with and without mass gap setting the stage for the complete calculation of the dominant two-loop corrections to electroweak processes at high energy.Comment: Latex, 5 pages, 2 figures. Bernd Feucht is Bernd Jantzen in later publications. (The contents of the paper is unchanged.

    The orbit rigidity matrix of a symmetric framework

    Full text link
    A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions. With this narrower focus on fully symmetric infinitesimal motions, comes the power to predict symmetry-preserving finite mechanisms - giving a simplified analysis which covers a wide range of the known mechanisms, and generalizes the classes of known mechanisms. This initial exploration of the properties of the orbit matrix also opens up a number of new questions and possible extensions of the previous results, including transfer of symmetry based results from Euclidean space to spherical, hyperbolic, and some other metrics with shared symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure

    Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems

    Full text link
    Within the framework of probability distributions on projective Hilbert space a scheme for the calculation of multitime correlation functions is developed. The starting point is the Markovian stochastic wave function description of an open quantum system coupled to an environment consisting of an ensemble of harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix elements of reduced Heisenberg picture operators and general time-ordered correlation functions can be expressed by time-symmetric expectation values of extended operators in a doubled Hilbert space. This representation allows the construction of a stochastic process in the doubled Hilbert space which enables the determination of arbitrary matrix elements and correlation functions. The numerical efficiency of the resulting stochastic simulation algorithm is investigated and compared with an alternative Monte Carlo wave function method proposed first by Dalibard et al. [Phys. Rev. Lett. {\bf 68}, 580 (1992)]. By means of a standard example the suggested algorithm is shown to be more efficient numerically and to converge faster. Finally, some specific examples from quantum optics are presented in order to illustrate the proposed method, such as the coupling of a system to a vacuum, a squeezed vacuum within a finite solid angle, and a thermal mixture of coherent states.Comment: RevTex, 19 pages, 3 figures, uses multico
    • …
    corecore