53 research outputs found

    On the tear resistance of skin.

    Get PDF
    Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. We explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. We express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip

    Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures

    Full text link
    High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centered cubic (fcc) solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature the alloy shows tensile strengths of almost 1 GPa, failure strains of ~70%, and KJIc fracture-toughness values above 200 MPa.m1/2; at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m1/2. Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.Comment: 7 pages, 4 figure

    Nanoscale Origins of the Damage Tolerance of the High-Entropy Alloy CrMnFeCoNi

    Full text link
    Damage-tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60-70%) and exceptional fracture toughness (KJIc > 200 MPa/m). Here, through the use of in-situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar-slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nano-scale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.Comment: 6 figures, 4 figure

    Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism

    Get PDF
    We believe this article is of broad interest to the materials science and engineering community. Bulk-metallic glasses (BMGs) are currently considered candidate materials for numerous structural applications. A major limitation in their use as engineering material is the often poor and inconsistent fatigue behavior. Although recently developed BMG composites provide one solution to this problem, fatigue remains a main issue for monolithic metallic glasses. The authors report unexpectedly high fatigue resistance in a monolithic Pd-based glass arising from extensive shear-band plasticity, resulting in a very rough and periodic “staircase” crack trajectory. The research both reveals a unique mechanism in fatigue of a monolithic metallic glass and demonstrates that this mechanism mitigates previous limitations on its use as an engineering material

    Submission 238 to: Australia's Science and Research Priorities - Conversation Starter

    Full text link
    Australia plans to obtain, build, and operate nuclear propelled submarines. The immense challenges brought about by this change in national defence strategy, along with the ambition to create a 20,000 strong nuclear science and engineering capable workforce, must be reflected in the National Science and Research Priorities, and the National Science Statement. We therefore recommend the inclusion of Nuclear Technology as a contemporary National Science and Research Priority, for consideration by the Science Strategy and Priorities Taskforce

    Ni-Nb-P-based bulk glass-forming alloys: Superior material properties combined in one alloy family

    Get PDF
    Ni-Nb-based bulk glass-forming alloys are among the most promising amorphous metals for industrial applications due to their incomparable combination of strength, hardness, elasticity and plasticity. However, the main drawback is the limited glass-forming ability, narrowing the field of application to solely small components. In this study, we show that minor additions of P to the binary Ni-Nb system increase the glass-forming ability by 150 % to a record value of 5 mm. P can be easily added by using an industrial Ni-P pre-alloy which is readily available. The partial substitution of Nb by Ta further boosts the glass-forming ability to values 200 % higher than that of the binary base alloy. Besides conventional X-ray diffraction measurements, the amorphous nature of the samples is verified by high-energy synchrotron X-ray diffraction experiments. Moreover, the mechanical properties of the new alloy compositions are characterized in uniaxial compression tests and Vickers hardness measurements, showing a high engineering yield strength of 3 GPa, an extended plastic regime up to 10 % strain to failure and an increase of the hardness to a maximum value of 1000 HV5. Additionally, calorimetric measurements reveal that the modified alloys feature an extended supercooled liquid region up to 69 K upon heating, permitting thermoplastic micro molding of amorphous feedstock material

    Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys close to liquid helium temperatures

    Full text link
    Medium- and high-entropy alloys based on the CrCoNi-system have been shown to display outstanding strength, tensile ductility and fracture toughness (damage-tolerance properties), especially at cryogenic temperatures. Here we examine the JIc and (back-calculated) KJIc fracture toughness values of the face-centered cubic, equiatomic CrCoNi and CrMnFeCoNi alloys at 20 K. At flow stress values of ~1.5 GPa, crack-initiation KJIc toughnesses were found to be exceptionally high, respectively 235 and 415 MPa(square-root)m for CrMnFeCoNi and CrCoNi, with the latter displaying a crack-growth toughness Kss exceeding 540 MPa(square-root)m after 2.25 mm of stable cracking, which to our knowledge is the highest such value ever reported. Characterization of the crack-tip regions in CrCoNi by scanning electron and transmission electron microscopy reveal deformation structures at 20 K that are quite distinct from those at higher temperatures and involve heterogeneous nucleation, but restricted growth, of stacking faults and fine nano-twins, together with transformation to the hexagonal closed-packed phase. The coherent interfaces of these features can promote both the arrest and transmission of dislocations to generate respectively strength and ductility which strongly contributes to sustained strain hardening. Indeed, we believe that these nominally single-phase, concentrated solid-solution alloys develop their fracture resistance through a progressive synergy of deformation mechanisms, including dislocation glide, stacking-fault formation, nano-twinning and eventually in situ phase transformation, all of which serve to extend continuous strain hardening which simultaneously elevates strength and ductility (by delaying plastic instability), leading to truly exceptional resistance to fracture.Comment: 31 pages, 10 figures, including Supplementary Informatio
    corecore