104 research outputs found

    Measuring the Discriminative Power of Rating Systems

    Get PDF
    Assessing the discriminative power of rating systems is an important question to banks and to regulators. In this article we analyze the Cumulative Accuracy Profile (CAP) and the Receiver Operating Characteristic (ROC) which are both commonly used in practice. We give a test-theoretic interpretation for the concavity of the CAP and the ROC curve and demonstrate how this observation can be used for more efficiently exploiting the informational contents of accounting ratios. Furthermore, we show that two popular summary statistics of these concepts, namely the Accuracy Ratio and the area under the ROC curve, contain the same information and we analyse the statistical properties of these measures. We show in detail how to identify accounting ratios with high discriminative power, how to calculate confidence intervals for the area below the ROC curve, and how to test if two rating models validated on the same data set are different. All concepts are illustrated by applications to real data. --Validation,Rating Models,Credit Analysis

    Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    Get PDF
    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C- macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation

    Blumenuhren, Zeit-Gedächtnis und Zeit-Vergessen

    Get PDF
    Viele Blütenpflanzen werden durch Insekten bestäubt. Bienen merken sich, wann Nektar und Pollen geliefert wird. Sie benutzen dabei eine innere Tagesuhr und einen Sonnenkompaß. Blütenblätter können sich rhythmisch öffnen und schließen. Oder die Blüten öffnen sich zu einer bestimmten Tages- oder Nachtzeit und bleiben dann geöffnet. Blattschneiderbienen werden gezüchtet und verkauft, um auf Feldern Luzerne zu befruchten. Dadurch kann zehn mal mehr Luzernesamen geerntet werden. Den Winter verbringen viel Insekten in Diapause, einem Ruhezustand. Strandflohkrebse können sich mit einem inneren Sonnenkompaß orientieren. Auch der Mensch hat einen Zeitsinn (Kopfuhr). Beobachtungen und Versuche werden vorgeschlagen

    Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets

    Get PDF
    Although tissue factor (TF), the principial initiator of physiological coagulation and pathological thrombosis, has recently been proposed to be present in human blood, the functional significance and location of the intravascular TF is unknown. In the plasma portion of blood, we found TF to be mainly associated with circulating microvesicles. By cell sorting with the specific marker CD42b, platelet-derived microvesicles were identified as a major location of the plasma TF. This was confirmed by the presence of full-length TF in microvesicles acutely shedded from the activated platelets. TF was observed to be stored in the α-granules and the open canalicular system of resting platelets and to be exposed on the cell surface after platelet activation. Functional competence of the blood-based TF was enabled when the microvesicles and platelets adhered to neutrophils, as mediated by P-selectin and neutrophil counterreceptor (PSGL-1, CD18 integrins) interactions. Moreover, neutrophil-secreted oxygen radical species supported the intravascular TF activity. The pools of platelet and microvesicle TF contributed additively and to a comparable extent to the overall blood TF activity, indicating a substantial participation of the microvesicle TF. Our results introduce a new concept of TF-mediated coagulation crucially dependent on TF associated with microvesicles and activated platelets, which principally enables the entire coagulation system to proceed on a restricted cell surface

    Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation

    Get PDF
    The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased — and, under conditions of decreased platelet adhesion, PDI inhibition reduced — fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet–secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury

    The implementation of dust mineralogy in COSMO5.05-MUSCAT

    Get PDF
    Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected. Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO–MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (Nickovic et al., 2012), together with a specific set of physical parameterizations in the model's mineral dust emission module, which led to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara region for January–February 2022. The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system PollyXT, located at Cape Verde. For a lofted mineral dust aerosol layer on 2 February at 05:00 UTC the lidar retrievals yield a dust mass concentration peak of 156 µg m−3, while the model calculates the mineral dust peak at 136 µg m−3. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since a higher absorption in the UV–Vis wavelengths is correlated with particles having a higher hematite content. Additionally, the comparison with in situ mineralogical measurements of dust aerosol particles shows that more of them are needed for model evaluation

    Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor

    Get PDF
    Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI

    Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    Get PDF
    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C(+) (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C(+) macrophages and Ly6C(-) macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI-and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation
    corecore