113 research outputs found

    Are microglial cells the regulators of lymphocyte responses in the CNS?

    Get PDF
    The infiltration of immune cells in the central nervous system is a common hallmark in different neuroinflammatory conditions. Accumulating evidence indicates that resident glial cells can establish a cross-talk with infiltrated immune cells, including T-cells, regulating their recruitment, activation and function within the CNS. Although the healthy CNS has been thought to be devoid of professional dendritic cells (DCs), numerous studies have reported the presence of a population of DCs in specific locations such as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration of DC precursors during neuroinflammatory situations has been proposed, suggesting a putative role of these cells in the regulation of lymphocyte activity within the CNS. On the other hand, under specific circumstances, microglial cells are able to acquire a phenotype of DC expressing a wide range of molecules that equip these cells with all the necessary machinery for communication with T-cells. In this review, we summarize the current knowledge on the expression of molecules involved in the cross-talk with T-cells in both microglial cells and DCs and discuss the potential contribution of each of these cell populations on the control of lymphocyte function within the CNS

    Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain

    Get PDF
    BACKGROUND: The forebrain subventricular zone (SVZ)-olfactory bulb pathway and hippocampal subgranular zone (SGZ) generate neurons into adulthood in the mammalian brain. Neurogenesis increases after injury to the adult brain, but few studies examine the effect of injury on neural and glial precursors in the postnatal brain. To characterize the spatio-temporal dynamics of cell proliferation in the germinative zones, this study utilized a model of postnatal damage induced by NMDA injection in the right sensorimotor cortex at postnatal day 9. Dividing cell populations were labeled with 5-Bromodeoxyuridine (BrdU) in the intact and damaged postnatal brain. Identity of proliferating cells was determined by double immunolabeling with nestin, GFAP, NeuN and tomato lectin (TL). RESULTS: In the control brain, grouped BrdU+ cells were observed in the Rostral Migratory Stream (RMS), SVZ and SGZ. Maximal proliferation was seen at P12, persisted until P23 and diminished by P49. After injury, a striking reduction in the number of BrdU+ cells was observed in the ipsilateral SVZ from 10 hours (58% decrease) until 14 days post-lesion (88% decrease). In contrast, an increase in grouped BrdU+ cells was seen in the striatum adjacent to the depleted SVZ. Significantly reduced numbers of BrdU+ cells were also seen in the RMS until 3 days post-lesion. No changes were noted in the SGZ. Both in controls and lesioned hemispheres, BrdU+ cells located in the germinal zones were mostly nestin positive and negative for GFAP, NeuN, and TL. In the SVZ area lining the ventricle, BrdU+/nestin+ cells were mainly located between TL+ ependyma and parenchymal GFAP+ astrocytes. After excitotoxicity, a decrease in the number and orientation of GFAP/nestin+ prolongations leaving the SVZ to the cortex, corpus callosum and striatum was noted until 5 days post-lesion. CONCLUSION: Postnatal excitotoxic injury differentially affects proliferating cells in the germinative zones: no change is observed in the dentate gyrus whereas excitotoxicity causes a significant decrease in proliferating cells in the SVZ and RMS. Depletion of BrdU+ cells in the postnatal SVZ and RMS differs from previous studies after adult brain injury and may affect the SVZ-RMS migration and is suggestive of progenitor recruitment to injured areas

    ABP integral en histología (teoria i pràctiques), una experiència amb èxit a la Facultat de Medicina

    Get PDF
    A la nostra Unitat tenim la responsabilitat de dues assignatures de la Llicenciatura de Medicina: (1) Histologia Mèdica (HM), semestral, troncal de 1r curs de 4,5 crèdits (3 crèdits teòrics i 1,5 crèdits pràctics). Al curs 2006-07 es varen matricular 387 estudiants. (2) Estructura Microscòpica d'Aparells I Sistemes Humans (EMASH), anyal, troncal de 2n curs de 9 crèdits (4,5 crèdits teòrics i 4,5 crèdits pràctics. Al curs 2006-07 es varen matricular 298 estudiants.En els darrers anys el nostre objectiu ha sigut migrar des de un mètode docent tradicional de classes magistrals fins a un mètode tipus ABP (Aprenentatge Basat en Problemes) integral (teoria i pràctiques), que a més a més seguís les directius del Protocol de Bolònia per tal d'integrar aquestes assignatures a un nou programa docent de la Llicenciatura a l' EEES (Espai Europeu d'Educació Superior)

    Desvetllant els secrets de la microglia

    Get PDF
    Altres ajuts: Universitat Autònoma de Barcelona; Direcció General de Recerca (Generalitat de Catalunya); Fundació "La Caixa

    Increase in Th17 and T-reg Lymphocytes and Decrease of IL22 Correlate with the Recovery Phase of Acute EAE IN Rat

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis, is characterised by microglial activation and lymphocyte infiltration. Induction of EAE in Lewis rats produces an acute monophasic disease characterised by a single peak of disability followed by a spontaneous and complete recovery and a subsequent tolerance to further immunizations. In the current study we have performed a detailed analysis of the dynamics of different lymphocyte populations and cytokine profile along the induction, peak, recovery and post-recovery phases in this paradigm. MBP-injected rats were sacrificed attending exclusively to their clinical score, and the different populations of T-lymphocytes as well as the dynamics of different pro- and anti-inflammatory cytokines were analysed in the spinal cord by flow cytometry, immunohistochemistry and ELISA. Our results revealed that, during the induction and peak phases, in parallel to an increase in symptomatology, the number of CD3+ and CD4+ cells increased progressively, showing a Th1 phenotype, but unexpectedly during recovery, although clinical signs progressively decreased, the number and proportion of CD3+ and CD4+ populations remained unaltered. Interestingly, during this recovery phase, we observed a marked decrease of Th1 and an important increase in Th17 and T-reg cells. Moreover, our results indicate a specific cytokine expression profile along the EAE course characterized by no changes of IL10 and IL17 levels, decrease of IL21 on the peak, and high IL22 levels during the induction and peak phases that markedly decrease during recovery. In summary, these results revealed the existence of a specific pattern of lymphocyte infiltration and cytokine secretion along the different phases of the acute EAE model in Lewis rat that differs from those already described in chronic or relapsing-remitting mouse models, where Th17-cells were found mostly during the peak, suggesting a specific role of these lymphocytes and cytokines in the evolution of this acute EAE model

    Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICThis work was supported by the Spanish Ministry of Economy and Business (BFU2014-55459 and BFU2017-87843-R).The subgranular zone of the dentate gyrus is an adult neurogenic niche where new neurons are continuously generated. A dramatic hippocampal neurogenesis decline occurs with increasing age, contributing to cognitive deficits. The process of neurogenesis is intimately regulated by the microenvironment, with inflammation being considered a strong negative factor for this process. Thus, we hypothesize that the reduction of new neurons in the aged brain could be attributed to the age-related microenvironmental changes towards a pro-inflammatory status. In this work, we evaluated whether an anti-inflammatory microenvironment could counteract the negative effect of age on promoting new hippocampal neurons. Surprisingly, our results show that transgenic animals chronically overexpressing IL-10 by astrocytes present a decreased hippocampal neurogenesis in adulthood. This results from an impairment in the survival of neural newborn cells without differences in cell proliferation. In parallel, hippocampal-dependent spatial learning and memory processes were affected by IL-10 overproduction as assessed by the Morris water maze test. Microglial cells, which are key players in the neurogenesis process, presented a different phenotype in transgenic animals characterized by high activation together with alterations in receptors involved in neuronal communication, such as CD200R and CX3CR1. Interestingly, the changes described in adult transgenic animals were similar to those observed by the effect of normal aging. Thus, our data suggest that chronic IL-10 overproduction mimics the physiological age-related disruption of the microglia-neuron dialogue, resulting in hippocampal neurogenesis decrease and spatial memory impairment

    Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Get PDF
    Background: Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results: Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion: When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene

    Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models

    Get PDF
    Microglia are the main immune cells of the central nervous system (CNS), and they are devoted to the active surveillance of the CNS during homeostasis and disease. In the last years, the microglial receptor Triggering Receptor Expressed on Myeloid cells-2 (TREM2) has been defined to mediate several microglial functions, including phagocytosis, survival, proliferation, and migration, and to be a key regulator of a new common microglial signature induced under neurodegenerative conditions and aging, also known as disease-associated microglia (DAM). Although microglial TREM2 has been mainly studied in chronic neurodegenerative diseases, few studies address its regulation and functions in acute inflammatory injuries. In this context, the present work aims to study the regulation of TREM2 and its functions after reparative axonal injuries, using two-well established animal models of anterograde and retrograde neuronal degeneration: the perforant pathway transection (PPT) and the facial nerve axotomy (FNA). Our results indicate the appearance of a subpopulation of microglia expressing TREM2 after both anterograde and retrograde axonal injury. TREM2+ microglia were not directly related to proliferation, instead, they were associated with specific recognition and/or phagocytosis of myelin and degenerating neurons, as assessed by immunohistochemistry and flow cytometry. Characterization of TREM2+ microglia showed expression of CD16/32, CD68, and occasional Galectin-3. However, specific singularities within each model were observed in P2RY12 expression, which was only downregulated after PPT, and in ApoE, where de novo expression was detected only in TREM2+ microglia after FNA. Finally, we report that the pro-inflammatory or anti-inflammatory cytokine microenvironment, which may affect phagocytosis, did not directly modify the induction of TREM2+ subpopulation in any injury model, although it changed TREM2 levels due to modification of the microglial activation pattern. In conclusion, we describe a unique TREM2+ microglial subpopulation induced after axonal injury, which is directly associated with phagocytosis of specific cell remnants and show different phenotypes, depending on the microglial activation status and the degree of tissue injury
    • …
    corecore