9,381 research outputs found
Theoretical investigation of FeTe magnetic ordering under hydrostatic pressure
We investigate the pressure phase diagram of FeTe, predicting structural and
magnetic properties in the normal state at zero temperature within density
functional theory (DFT). We carefully examined several possible different
crystal structures over a pressure range up to GPa: simple
tetragonal (PbO type), simple monoclinic, orthorhombic (MnP type), hexagonal
(NiAs and wurzite type) and cubic (CsCl and NaCl type). We predict pressure to
drive the system through different magnetic ordering (notably also some
ferromagnetic phases) eventually suppressing magnetism at around 17GPa. We
speculate the ferromagnetic order to be the reason for the absence of a
superconducting phase in FeTe at variance with the case of FeSe.Comment: 11 figure
The Amati relation in the "fireshell" model
(Shortened) CONTEXT: [...] AIMS: Motivated by the relation proposed by Amati
and collaborators, we look within the ``fireshell'' model for a relation
between the peak energy E_p of the \nu F_\nu total time-integrated spectrum of
the afterglow and the total energy of the afterglow E_{aft}, which in our model
encompasses and extends the prompt emission. METODS: [...] Within the fireshell
model [...] We can then build two sets of ``gedanken'' GRBs varying the total
energy of the electron-positron plasma E^{e^\pm}_{tot} and keeping the same
baryon loading B of GRB050315. The first set assumes for the effective CBM
density the one obtained in the fit of GRB050315. The second set assumes
instead a constant CBM density equal to the average value of the GRB050315
prompt phase. RESULTS: For the first set of ``gedanken'' GRBs we find a
relation E_p\propto (E_{aft})^a, with a = 0.45 \pm 0.01, whose slope strictly
agrees with the Amati one. Such a relation, in the limit B \to 10^{-2},
coincides with the Amati one. Instead, in the second set of ``gedanken'' GRBs
no correlation is found. CONCLUSIONS: Our analysis excludes the Proper-GRB
(P-GRB) from the prompt emission, extends all the way to the latest afterglow
phases and is independent on the assumed cosmological model, since all
``gedanken'' GRBs are at the same redshift. The Amati relation, on the other
hand, includes also the P-GRB, focuses on the prompt emission only, and is
therefore influenced by the instrumental threshold which fixes the end of the
prompt emission, and depends on the assumed cosmology. This may well explain
the intrinsic scatter observed in the Amati relation.Comment: 4 pages, 5 figures, to appear on A&A Letter
The X-ray light curve of Gamma-ray bursts: clues to the central engine
We present the analysis of a large sample of gamma-ray burst (GRB) X-ray
light curves in the rest frame to characterise their intrinsic properties in
the context of different theoretical scenarios. We determine the morphology,
time scales, and energetics of 64 long GRBs observed by \emph{Swift}/XRT
\emph{without} flaring activity. We furthermore provide a one-to-one comparison
to the properties of GRBs \emph{with} X-ray flares. We find that the steep
decay morphology and its connection with X-ray flares favour a scenario in
which a central engine origin. We show that this scenario can also account for
the shallow decay phase, provided that the GRB progenitor star has a
self-similar structure with a constant envelope-to-core mass ratio . However, difficulties arise for very long duration
( s) shallow phases. Alternatively, a spinning-down magnetar
whose emitted power refreshes the forward shock can quantitatively account for
the shallow decay properties. In particular we demonstrate that this model can
account for the plateau luminosity vs. end time anticorrelation.Comment: 12 pages, 8 figures, accepted for publication in A&
Axitinib induces senescence-associated cell death and necrosis in glioma cell lines: The proteasome inhibitor, bortezomib, potentiates axitinib-induced cytotoxicity in a p21(Waf/Cip1) dependent manner.
Glioblastoma is associated with a poor overall survival despite new treatment advances. Antiangiogenic strategies targeting VEGF based on tyrosine kinase inhibitors (TKIs) are currently undergoing extensive research for the treatment of glioma.
Herein we demonstrated that the TKI axitinib induces DNA damage response (DDR) characterized by γ-H2AX phosphorylation and Chk1 kinase activation leading to G2/M cell cycle arrest and mitotic catastrophe in U87, T98 and U251 glioma cell lines. Moreover, we found that p21(Waf1/Cip1) increased levels correlates with induction of ROS and senescence-associated cell death in U87 and T98 cell lines, which are reverted by N-acetyl cysteine pretreatment. Conversely, U251 cell line showed a resistant phenotype in response to axitinib treatment, as evidenced by cell cycle arrest but no sign of cell death.
The combinatorial use of axitinib with other therapies, with the aim of inhibiting multiple signaling pathways involved in tumor growth, can increase the efficiency of this TKI. Thus, we addressed the combined effects of axitinib with no toxic doses of the proteasome inhibitor bortezomib on the growth of U87 and T98 axitinib- sensitive and axitinib-resistant U251 cell lines. Compared to single treatments, combined exposure was more effective in inhibiting cell viability of all glioma cell lines, although with different cell death modalities. The regulation of key DDR and cell cycle proteins, including Chk1, γ-H2AX and p21(Waf1/Cip1) was also studied in glioma cell lines.
Collectively, these findings provide new perspectives for the use of axitinib in combination with Bortezomib to overcome the therapy resistance in gliomas
Accurate calculation of polarization-related quantities in semiconductors
We demonstrate that polarization-related quantities in semiconductors can be
predicted accurately from first-principles calculations using the appropriate
approach to the problem, the Berry-phase polarization theory. For III-V
nitrides, our test case, we find polarizations, polarization differences
between nitride pairs, and piezoelectric constants quite close to their
previously established values. Refined data are nevertheless provided for all
the relevant quantities.Comment: RevTeX 4 pages, no figure
Effect of ELF e.m. fields on metalloprotein redox-active sites
The peculiarity of the distribution and geometry of metallic ions in enzymes
pushed us to set the hypothesis that metallic ions in active-site act like tiny
antennas able to pick up very feeble e.m. signals. Enzymatic activity of Cu2+,
Zn2+ Superoxide Dismutase (SOD1) and Fe2+ Xanthine Oxidase (XO) has been
studied, following in vitro generation and removal of free radicals. We
observed that Superoxide radicals generation by XO is increased by a weak field
having the Larmor frequency fL of Fe2+ while the SOD1 kinetics is sensibly
reduced by exposure to a weak field having the frequency fL of Cu2+ ion.Comment: 18 pages, 4 figure
GRB970228 and the class of GRBs with an initial spikelike emission: do they follow the Amati relation?
On the basis of the recent understanding of GRB050315 and GRB060218, we
return to GRB970228, the first Gamma-Ray Burst (GRB) with detected afterglow.
We proposed it as the prototype for a new class of GRBs with "an occasional
softer extended emission lasting tenths of seconds after an initial spikelike
emission". Detailed theoretical computation of the GRB970228 light curves in
selected energy bands for the prompt emission are presented and compared with
observational BeppoSAX data. From our analysis we conclude that GRB970228 and
likely the ones of the above mentioned new class of GRBs are "canonical GRBs"
have only one peculiarity: they exploded in a galactic environment, possibly
the halo, with a very low value of CBM density. Here we investigate how
GRB970228 unveils another peculiarity of this class of GRBs: they do not
fulfill the "Amati relation". We provide a theoretical explanation within the
fireshell model for the apparent absence of such correlation for the GRBs
belonging to this new class.Comment: 5 pages, 3 figures, in the Proceedings of the "4th Italian-Sino
Workshop on Relativistic Astrophysics", held in Pescara, Italy, July 20-28,
2007, C.L. Bianco, S.-S. Xue, Editor
First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory
A number of diverse bulk properties of the zincblende and wurtzite III-V
nitrides AlN, GaN, and InN, are predicted from first principles within density
functional theory using the plane-wave ultrasoft pseudopotential method, within
both the LDA (local density) and GGA (generalized gradient) approximations to
the exchange-correlation functional. Besides structure and cohesion, we study
formation enthalpies (a key ingredient in predicting defect solubilities and
surface stability), spontaneous polarizations and piezoelectric constants
(central parameters for nanostructure modeling), and elastic constants. Our
study bears out the relative merits of the two density functional approaches in
describing diverse properties of the III-V nitrides (and of the parent species
N, Al, Ga, and In), and leads us to conclude that the GGA approximation,
associated with high-accuracy techniques such as multiprojector ultrasoft
pseudopotentials or modern all-electron methods, is to be preferred in the
study of III-V nitrides.Comment: RevTeX 6 pages, 12 tables, 0 figure
There is a short gamma-ray burst prompt phase at the beginning of each long one
We compare the prompt intrinsic spectral properties of a sample of short
Gamma--ray Burst (GRB) with the first 0.3 seconds (rest frame) of long GRBs
observed by Fermi/GBM. We find that short GRBs and the first part of long GRBs
lie on the same E_p--E_iso correlation, that is parallel to the relation for
the time averaged spectra of long GRBs. Moreover, they are indistinguishable in
the E_p--L_iso plane. This suggests that the emission mechanism is the same for
short and for the beginning of long events, and both short and long GRBs are
very similar phenomena, occurring on different timescales. If the central
engine of a long GRB would stop after ~0.3 * (1+z) seconds the resulting event
would be spectrally indistinguishable from a short GRB.Comment: 14 pages, 6 figures, MNRAS accepte
- …
