45 research outputs found

    Online Tracking of the Contents of Conscious Perception Using Real-Time fMRI

    Get PDF
    Perception is an active process that interprets and structures the stimulus input based on assumptions about its possible causes. We use real-time functional magnetic resonance imaging (rtfMRI) to investigate a particularly powerful demonstration of dynamic object integration in which the same physical stimulus intermittently elicits categorically different conscious object percepts. In this study, we simulated an outline object that is moving behind a narrow slit. With such displays, the physically identical stimulus can elicit categorically different percepts that either correspond closely to the physical stimulus (vertically moving line segments) or represent a hypothesis about the underlying cause of the physical stimulus (a horizontally moving object that is partly occluded). In the latter case, the brain must construct an object from the input sequence. Combining rtfMRI with machine learning techniques we show that it is possible to determine online the momentary state of a subject’s conscious percept from time resolved BOLD-activity. In addition, we found that feedback about the currently decoded percept increased the decoding rates compared to prior fMRI recordings of the same stimulus without feedback presentation. The analysis of the trained classifier revealed a brain network that discriminates contents of conscious perception with antagonistic interactions between early sensory areas that represent physical stimulus properties and higher-tier brain areas. During integrated object percepts, brain activity decreases in early sensory areas and increases in higher-tier areas. We conclude that it is possible to use BOLD responses to reliably track the contents of conscious visual perception with a relatively high temporal resolution. We suggest that our approach can also be used to investigate the neural basis of auditory object formation and discuss the results in the context of predictive coding theory

    Temperature Sensitive 19F-Substituted Molecules for Combined Proton-/Fluorine-Imaging in a 7 T Whole-Body MRI System

    Get PDF
    ¹⁹F MR spectroscopy and imaging represent important tools for the development of new MR contrast agents and pharmaceutics. Until now, there are only a few published data that described the influence of temperature changes to the ¹⁹F chemical shifts in aqueous solutions. Temperature coefficients up to ~ 8.7Hz/K were determined. Thermoresponsive agents are of high interest in, e.g. hyperthermia studies. Changes in signal intensity and chemical shift give information of the local temperature. Here, we present novel MR spectroscopic and imaging data, which describe the ¹⁹F MR signal temperature dependency of different fluorinated organic substrates in isotonic saline solution and their temperature calculation methods

    Robust and Fast Whole Brain Mapping of the RF Transmit Field B1 at 7T

    Get PDF
    In-vivo whole brain mapping of the radio frequency transmit field B1+ is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B1+ mapping at 7T. The method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against large B1+ deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively

    MIRACUM: Medical Informatics in Research and Care in University Medicine : A Large Data Sharing Network to Enhance Translational Research and Medical Care

    Get PDF
    Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on the German Medical Informatics Initiative. Similar to other large international data sharing networks (e.g. OHDSI, PCORnet, eMerge, RD-Connect) MIRACUM is a consortium of academic and hospital partners as well as one industrial partner in eight German cities which have joined forces to create interoperable data integration centres (DIC) and make data within those DIC available for innovative new IT solutions in patient care and medical research. Objectives: Sharing data shall be supported by common interoperable tools and services, in order to leverage the power of such data for biomedical discovery and moving towards a learning health system. This paper aims at illustrating the major building blocks and concepts which MIRACUM will apply to achieve this goal. Governance and Policies: Besides establishing an efficient governance structure within the MIRACUM consortium (based on the steering board, a central administrative office, the general MIRACUM assembly, six working groups and the international scientific advisory board), defining DIC governance rules and data sharing policies, as well as establishing (at each MIRACUM DIC site, but also for MIRACUM in total) use and access committees are major building blocks for the success of such an endeavor. Architectural Framework and Methodology: The MIRACUM DIC architecture builds on a comprehensive ecosystem of reusable open source tools (MIRACOLIX), which are linkable and interoperable amongst each other, but also with the existing software environment of the MIRACUM hospitals. Efficient data protection measures, considering patient consent, data harmonization and a MIRACUM metadata repository as well as a common data model are major pillars of this framework. The methodological approach for shared data usage relies on a federated querying and analysis concept. Use Cases: MIRACUM aims at proving the value of their DIC with three use cases: IT support for patient recruitment into clinical trials, the development and routine care implementation of a clinico-molecular predictive knowledge tool, and molecular-guided therapy recommendations in molecular tumor boards. Results: Based on the MIRACUM DIC release in the nine months conceptual phase first large scale analysis for stroke and colorectal cancer cohorts have been pursued. Discussion: Beyond all technological challenges successfully applying the MIRACUM tools for the enrichment of our knowledge about diagnostic and therapeutic concepts, thus supporting the concept of a Learning Health System will be crucial for the acceptance and sustainability in the medical community and the MIRACUM university hospitals

    Predicting Decisions in Human Social Interactions Using Real-Time fMRI and Pattern Classification

    Get PDF
    Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one's counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of their neuronal activation signature. However, to enable an online-assessment of the participant's mind state both approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging (fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70% when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum game. Using whole brain classification we were also able to discriminate between brain processes related to subjective emotional and motivational states and brain processes related to the evaluation of objective financial incentives

    LED-based photo-CIDNP hyperpolarization enables 19F MR imaging and 19F NMR spectroscopy of 3-fluoro-DL-tyrosine at 0.6 T

    Full text link
    Although 19F has high potential to serve as a background-free molecular marker in bioimaging, the molar amount of marker substance is often too small to enable 19F MR imaging or 19F NMR spectroscopy with a sufficiently high signal-to-noise ratio (SNR). Hyperpolarization methods such as parahydrogen-based hyperpolarization or dynamic nuclear polarization (DNP) can significantly improve the SNR, but require expensive and complex sample preparation and the removal of toxic catalysts and solvents. Therefore, we used the biologically compatible model of the fluorinated amino acid 3-fluoro-DL-tyrosine with riboflavin 5'-monophosphate (FMN) as a chromophore dissolved in D2O with 3.4% H2Odest. allowing to transform light energy into hyperpolarization of the 19F nucleus via photo-chemically induced dynamic nuclear polarization (photo-CIDNP). We used a low-cost high-power blue LED to illuminate the sample replacing traditionally used laser excitation, which is both potentially harmful and costly. For the first time, we present results of hyperpolarized 19F MRI and 19F NMR performed with a low-cost 0.6 T benchtop MRI system. The device allowed simultaneous dual channel 1H/19F NMR. 19F imaging was performed with a (0.94 mm)2 in-plane resolution. This enabled the spatial resolution of different degrees of hyperpolarization within the sample. We estimated the photo-CIDNP-based 19F signal enhancement at 0.6 T to be approximately 465. FMN did not bleach out even after multiple excitations, so that the signal-to-noise ratio could be further improved by averaging hyperpolarized signals. The results show that the easy-to-use experimental setup has a high potential to serve as an efficient preclinical tool for hyperpolarization studies in bioimaging.Comment: 16 pages, 5 figures, supplementary information (4pages, 4 figures

    A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation

    No full text
    Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new interactive paradigms such as the monitoring of mutual information flow or the controlling of objects in shared virtual environments. For that reason, a previously developed framework that provided an integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI. Important new components included a data exchange platform for analyzing the data of both MR scanners independently and/or jointly. Information related to brain activation can be displayed separately or in a shared view. However, a signal calibration procedure had to be developed and integrated in order to permit the connecting of sites that had different hardware and to account for different inter-individual brain activation levels. The framework was successfully validated in a proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly differing signals, and BCI functionality on each site proved to work as required. To model interactions between brains in real-time, more complex rules utilizing mutual activation patterns could easily be implemented to allow for new kinds of social fMRI experiments
    corecore