1,116 research outputs found

    Resection Margins for Colorectal Metastases to The Liver: Do They Make A Difference?

    Get PDF
    Objective: The authors determined an appropriate surgical treatment for liver metastases from colorectal cancers. Clinicopathologic featuresof metastatic lesions of colorectal cancers were studied

    The metallicity range of variables in M3

    Full text link
    The recently published spectroscopic metallicities of RR Lyrae stars in M3 (Sandstrom, K., Pilachowski, C. A., and Saha, A. 2001, AJ 122, 3212) though show a relatively wide range of the [Fe/H] values, the conclusion that no metallicity spread is real has been drawn, as no dependence on either minimum temperature or period was detected. Comparing these spectroscopic metallicities with [Fe/H] calculated from the Fourier parameters of the light curves of the variables a correlation between the [Fe/H] values appears. As a consequence of the independence of the spectroscopic and photometric metallicities, this correlation points to the reality of a metallicity spread. The absolute magnitudes of these stars follow a similar trend along both the spectroscopic and photometric metallicities as the general MV[Fe/H]\mathrm{M_V - [Fe/H]} relation predicts, which strengthens that the detected metallicity range is real.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Dust in the diffuse ISM as revealed by DIRBE observations

    Get PDF
    The weekly averaged DIRBE full sky images have been processed to separate the various components contributing to the total brightness in the various bands. The zodiacal emission, which dominates at 12 and 25 μm and the zodiacal dust scattering at λ<5 μm are both accounted for using an empirical fit to the data. The diffuse stellar emission which dominates at λ<5 μm is determined using the shortest DIRBE photometric bands at 1.25 and 2.2 μm and a standard NIR extinction law. Preliminary results based on the first release of the DIRBE data have been presented in Bernard et al. 1994. When the zodiacal light and stellar emission are subtracted, significant emission remains above 2.2 μm, which follows the general distribution of the dust emission as seen in the IRAS bands. The DIRBE images therefore allow to extend our knowledge of the dust emission spectrum below 12 μm and above 100 μm. In the L(3.5 μm) and M(4.9 μm) bands, the dust emission can be seen not only toward the galactic plane but also in diffuse regions above the plane as well as toward closeby molecular complexes (ρ‐Ophiuchi, Orion, Taurus,...). The existence of NIR dust emission in cold and diffuse regions strongly suggests transiently heated small dust particles as the carrier. The dust NIR spectrum is generally consistent with the dust model of Désert et al. 1990. In particular, the dust emission increases from 4.9 to 3.5 μm, which can be attributed to the contribution of the 3.3 μm emission feature of Polycyclic Aromatic Hydrocarbons (PAH). Significant continuum emission, or other feature emission, is also required to explain the observed brightness in the L band and the AROME ballon experiment results at low galactic latitude

    Dark gas in the solar neighnorhood from extinction data

    Full text link
    When modeling infrared or gamma-ray data as a linear combination of observed gas tracers, excess emission has been detected compared to expectations from known neutral and atomic gas as traced by HI and CO measurements, respectively. This excess might correspond to an additional gas component. This so-called "dark gas" (DG) has been observed in our Galaxy, as well as the Magellanic Clouds. For the first time, we investigate the correlation between visible extinction (Av) data and gas tracers on large scales in the solar neighborhood. Our work focuses on both the solar neighborhood (|b|>10\degr), and the inner and outer Galaxy, as well as on four individual regions: Taurus, Orion, Cepheus-Polaris and Aquila-Ophiuchus. Thanks to the recent production of an all-sky Av map, we first perform the correlation between Av and both HI and CO emission over the most diffuse regions, to derive the optimal (Av/NH)^(ref) ratio. We then iterate the analysis over the entire regions to estimate the CO-to-H2 conversion factor as well as the DG mass fraction. The average extinction to gas column-density ratio in the solar neighborhood is found to be (Av/NH)^(ref)=6.53 10^(-22) mag. cm^2, with significant differences between the inner and outer Galaxy. We derive an average XCO value of 1.67 10^(20) H2 cm^(-2)/(K km s^(-1)). In the solar neighborhood, the gas mass in the dark component is found to be 19% relative to that in the atomic component and 164% relative to the one traced by CO. These results are compatible with the recent analysis using Planck data within the uncertainties of our measurements. We estimate the ratio of dark gas to total molecular gas to be 0.62 in the solar neighborhood. The HI-to-H2 and H2-to-CO transitions appear for Av \simeq0.2 mag and Av1.5\simeq1.5 mag, respectively, in agreement with theoretical models of dark-H2 gas.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in A&A (in press

    Low Energy Leptogenesis in Left-Right Symmetric Models

    Get PDF
    We propose a new mechanism for baryogenesis. We study the effective potential of left-right extension of the standard model and show that there can be a first order phase transition at the left-right symmetry breaking and hence (BL)(B-L) symmetry breaking scale, which is around TeV in our scenario. As a result, although (BL)(B-L) violating interactions are in equilibrium at this scale, enough (BL)(B-L) asymmetry may be generated. This (BL)(B-L) asymmetry is then converted to baryon asymmetry during the anomalous electroweak process. If right handed gauge bosons are seen in the TeV scale, then we argue that this will be the only consistent mechanism to generate baryon asymmetry of the universe.Comment: 16 pages (Latex file) - 1 postscript figure appende

    Persistent spins in the linear diffusion approximation of phase ordering and zeros of stationary gaussian processes

    Full text link
    The fraction r(t) of spins which have never flipped up to time t is studied within a linear diffusion approximation to phase ordering. Numerical simulations show that, even in this simple context, r(t) decays with time like a power-law with a non-trival exponent θ\theta which depends on the space dimension. The local dynamics at a given point is a special case of a stationary gaussian process of known correlation function and the exponent θ\theta is shown to be determined by the asymptotic behavior of the probability distribution of intervals between consecutive zero-crossings of this process. An approximate way of computing this distribution is proposed, by taking the lengths of the intervals between successive zero-crossings as independent random variables. The approximation gives values of the exponent θ\theta in close agreement with the results of simulations.Comment: 10 pages, 2 postscript files. Submitted to PRL. Reference screwup correcte

    Exact first-passage exponents of 1D domain growth: relation to a reaction diffusion model

    Full text link
    In the zero temperature Glauber dynamics of the ferromagnetic Ising or qq-state Potts model, the size of domains is known to grow like t1/2t^{1/2}. Recent simulations have shown that the fraction r(q,t)r(q,t) of spins which have never flipped up to time tt decays like a power law r(q,t)tθ(q)r(q,t) \sim t^{-\theta(q)} with a non-trivial dependence of the exponent θ(q)\theta(q) on qq and on space dimension. By mapping the problem on an exactly soluble one-species coagulation model (A+AAA+A\rightarrow A), we obtain the exact expression of θ(q)\theta(q) in dimension one.Comment: latex,no figure

    Can We Trust the Dust? Evidence of Dust Segregation in Molecular Clouds

    Get PDF
    Maps of estimated dust column density in molecular clouds are usually assumed to reliably trace the total gas column density structure. In this work we present results showing a clear discrepancy between the dust and the gas distribution in the Taurus molecular cloud complex. We compute the power spectrum of a 2MASS extinction map of the Taurus region and find it is much shallower than the power spectrum of a 13CO map of the same region previously analyzed. This discrepancy may be explained as the effect of grain growth on the grain extinction efficiency. However, this would require a wide range of maximum grain sizes, which is ruled out based on constraints from the extinction curve and the available grain models. We show that major effects due to CO formation and depletion are also ruled out. Our result may therefore suggest the existence of intrinsic spatial fluctuations of the dust to gas ratio, with amplitude increasing toward smaller scales. Preliminary results of numerical simulations of trajectories of inertial particles in turbulent flows illustrate how the process of clustering of dust grains by the cloud turbulence may lead to observable effects. However, these results cannot be directly applied to large scale supersonic and magnetized turbulence at present.Comment: 10 pages, 8 figures included, ApJ, in pres
    corecore