34,501 research outputs found

    \u3ci\u3eCryptopygus Bipunctatus\u3c/i\u3e (Collembola: Isotomidae) in North America, and \u3ci\u3eC. Posteroculatus\u3c/i\u3e N. Comb.

    Get PDF
    Specimens of Cryptopygus bipunctatus are reported and described from North America (Michigan) for the first time. The species is easily recognized by its lack of color, one pair of ocelli on black eyespots, and one flair of ventral manubrial setae. Michigan and European specimens are very· similar. A very similar Polish species, Isotomina posteroculata, is transferred to Cryptopygus

    The Final Merger of Black-Hole Binaries

    Full text link
    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress, these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics.Comment: 57 pages; 9 figures. Updated references & fixed typos. Published version is at http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.010909.08324

    Black-hole binaries, gravitational waves, and numerical relativity

    Full text link
    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground- and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed.Comment: 54 pages, 42 figures. Some typos corrected & references updated. Essentially final published versio

    Enhanced chiral logarithms in partially quenched QCD

    Get PDF
    I discuss the properties of pions in ``partially quenched'' theories, i.e. those in which the valence and sea quark masses, mVm_V and mSm_S, are different. I point out that for lattice fermions which retain some chiral symmetry on the lattice, e.g. staggered fermions, the leading order prediction of the chiral expansion is that the mass of the pion depends only on mVm_V, and is independent of mSm_S. This surprising result is shown to receive corrections from loop effects which are of relative size mSlnmVm_S \ln m_V, and which thus diverge when the valence quark mass vanishes. Using partially quenched chiral perturbation theory, I calculate the full one-loop correction to the mass and decay constant of pions composed of two non-degenerate quarks, and suggest various combinations for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral Lagrangian. These results can also be tested with Wilson fermions if one uses a non-perturbative definition of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected (alpha_4 is replaced by alpha_4/2

    Current Emergency Locator Transmitter (ELT) deficiencies and potential improvements utilizing TSO-C91a ELTs

    Get PDF
    An analysis was conducted of current ELT problems and potential improvements that could be made by employing the TSO-C91a ELTs to replace the current TSO-C91 ELTs. The scope of the study included the following: (1) validate the problems; (2) determine specific failure causes; (3) determine false alarm causes; (4) estimate improvements from TSO-C91a; (5) estimate benefits from replacement of the current ELTs; and (6) determine need and benefits for improved ELT inspection and maintenance. A detailed comparison between the two requirements documents (TSO-C91 and -91a) was made to assess improved performance of the ELT in each category of failure cause and each cause of false alarms. The comparison and analysis resulted in projecting a success of operation rate approximately 3 times the current rate and a reduction in false alarms to 0.25 of those generated by TSO-C91 ELTs. These improvements led to a projection of benefits of approximately 25 additional lives to be saved each year with TSO-C91a ELTs and an improved inspection and maintenance program

    Neon, sulphur and argon abundances of planetary nebulae in the sub-solar metallicity Galactic anti-centre

    Get PDF
    Context: Spectra of planetary nebulae show numerous fine structure emission lines from ionic species, enabling us to study the overall abundances of the nebular material that is ejected into the interstellar medium. The abundances derived from planetary nebula emission show the presence of a metallicity gradient within the disk of the Milky Way up to Galactocentric distances of ∼ 10 kpc, which are consistent with findings from studies of different types of sources, including H II regions and young B-type stars. The radial dependence of these abundances further from the Galactic centre is in dispute. Aims: We aim to derive the abundances of neon, sulphur and argon from a sample of planetary nebulae towards the Galactic anti- centre, which represent the abundances of the clouds from which they were formed, as they remain unchanged throughout the course of stellar evolution. We then aim to compare these values with similarly analysed data from elsewhere in the Milky Way in order to observe whether the abundance gradient continues in the outskirts of our Galaxy. Methods: We have observed 23 planetary nebulae at Galactocentric distances of 8–21 kpc with Spitzer IRS. The abundances were calculated from infrared emission lines, for which we observed the main ionisation states of neon, sulphur, and argon, which are little affected by extinction and uncertainties in temperature measurements or fluctuations within the planetary nebula. We have complemented these observations with others from optical studies in the literature, in order to reduce or avoid the need for ionisation correction factors in abundance calculations. Results: The overall abundances of our sample of planetary nebulae in the Galactic anti-centre are lower than those in the solar neighbourhood. The abundances of neon, sulphur, and argon from these stars are consistent with a metallicity gradient from the solar neighbourhood up to Galactocentric distances of ∼ 20 kpc, albeit with varying degrees of dispersion within the data

    Fisher information matrix for single molecules with stochastic trajectories

    Full text link
    Tracking of objects in cellular environments has become a vital tool in molecular cell biology. A particularly important example is single molecule tracking which enables the study of the motion of a molecule in cellular environments and provides quantitative information on the behavior of individual molecules in cellular environments, which were not available before through bulk studies. Here, we consider a dynamical system where the motion of an object is modeled by stochastic differential equations (SDEs), and measurements are the detected photons emitted by the moving fluorescently labeled object, which occur at discrete time points, corresponding to the arrival times of a Poisson process, in contrast to uniform time points which have been commonly used in similar dynamical systems. The measurements are distributed according to optical diffraction theory, and therefore, they would be modeled by different distributions, e.g., a Born and Wolf profile for an out-of-focus molecule. For some special circumstances, Gaussian image models have been proposed. In this paper, we introduce a stochastic framework in which we calculate the maximum likelihood estimates of the biophysical parameters of the molecular interactions, e.g., diffusion and drift coefficients. More importantly, we develop a general framework to calculate the Cram\'er-Rao lower bound (CRLB), given by the inverse of the Fisher information matrix, for the estimation of unknown parameters and use it as a benchmark in the evaluation of the standard deviation of the estimates. There exists no established method, even for Gaussian measurements, to systematically calculate the CRLB for the general motion model that we consider in this paper. We apply the developed methodology to simulated data of a molecule with linear trajectories and show that the standard deviation of the estimates matches well with the square root of the CRLB

    Staggered Chiral Perturbation Theory and the Fourth-Root Trick

    Full text link
    Staggered chiral perturbation theory (schpt) takes into account the "fourth-root trick" for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular the restoration of taste symmetry, schpt then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a "mixed" theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of schpt, so that a variety of possible new routes for testing this validity are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and less tentative discussion in several places; corresponds to published versio

    Threshold Photo/Electro Pion Production - Working Group Summary

    Full text link
    We summarize the pertinent experimental and theoretical developments in the field of pion photo- and electroproduction in the threshold region. We discuss which experiments and which calculations should be done/performed in the future.Comment: plain TeX (macro included), 6pp, summary talk presented at the workshop on "Chiral Dynamics: Theory and Experiments", MIT, July 25-29, 199
    corecore