34,501 research outputs found
\u3ci\u3eCryptopygus Bipunctatus\u3c/i\u3e (Collembola: Isotomidae) in North America, and \u3ci\u3eC. Posteroculatus\u3c/i\u3e N. Comb.
Specimens of Cryptopygus bipunctatus are reported and described from North America (Michigan) for the first time. The species is easily recognized by its lack of color, one pair of ocelli on black eyespots, and one flair of ventral manubrial setae. Michigan and European specimens are very· similar. A very similar Polish species, Isotomina posteroculata, is transferred to Cryptopygus
The Final Merger of Black-Hole Binaries
Recent breakthroughs in the field of numerical relativity have led to
dramatic progress in understanding the predictions of General Relativity for
the dynamical interactions of two black holes in the regime of very strong
gravitational fields. Such black-hole binaries are important astrophysical
systems and are a key target of current and developing gravitational-wave
detectors. The waveform signature of strong gravitational radiation emitted as
the black holes fall together and merge provides a clear observable record of
the process. After decades of slow progress, these mergers and the
gravitational-wave signals they generate can now be routinely calculated using
the methods of numerical relativity. We review recent advances in understanding
the predicted physics of events and the consequent radiation, and discuss some
of the impacts this new knowledge is having in various areas of astrophysics.Comment: 57 pages; 9 figures. Updated references & fixed typos. Published
version is at
http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.010909.08324
Black-hole binaries, gravitational waves, and numerical relativity
Understanding the predictions of general relativity for the dynamical
interactions of two black holes has been a long-standing unsolved problem in
theoretical physics. Black-hole mergers are monumental astrophysical events,
releasing tremendous amounts of energy in the form of gravitational radiation,
and are key sources for both ground- and space-based gravitational-wave
detectors. The black-hole merger dynamics and the resulting gravitational
waveforms can only be calculated through numerical simulations of Einstein's
equations of general relativity. For many years, numerical relativists
attempting to model these mergers encountered a host of problems, causing their
codes to crash after just a fraction of a binary orbit could be simulated.
Recently, however, a series of dramatic advances in numerical relativity has
allowed stable, robust black-hole merger simulations. This remarkable progress
in the rapidly maturing field of numerical relativity, and the new
understanding of black-hole binary dynamics that is emerging is chronicled.
Important applications of these fundamental physics results to astrophysics, to
gravitational-wave astronomy, and in other areas are also discussed.Comment: 54 pages, 42 figures. Some typos corrected & references updated.
Essentially final published versio
Enhanced chiral logarithms in partially quenched QCD
I discuss the properties of pions in ``partially quenched'' theories, i.e.
those in which the valence and sea quark masses, and , are
different. I point out that for lattice fermions which retain some chiral
symmetry on the lattice, e.g. staggered fermions, the leading order prediction
of the chiral expansion is that the mass of the pion depends only on , and
is independent of . This surprising result is shown to receive corrections
from loop effects which are of relative size , and which thus
diverge when the valence quark mass vanishes. Using partially quenched chiral
perturbation theory, I calculate the full one-loop correction to the mass and
decay constant of pions composed of two non-degenerate quarks, and suggest
various combinations for which the prediction is independent of the unknown
coefficients of the analytic terms in the chiral Lagrangian. These results can
also be tested with Wilson fermions if one uses a non-perturbative definition
of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected
(alpha_4 is replaced by alpha_4/2
Current Emergency Locator Transmitter (ELT) deficiencies and potential improvements utilizing TSO-C91a ELTs
An analysis was conducted of current ELT problems and potential improvements that could be made by employing the TSO-C91a ELTs to replace the current TSO-C91 ELTs. The scope of the study included the following: (1) validate the problems; (2) determine specific failure causes; (3) determine false alarm causes; (4) estimate improvements from TSO-C91a; (5) estimate benefits from replacement of the current ELTs; and (6) determine need and benefits for improved ELT inspection and maintenance. A detailed comparison between the two requirements documents (TSO-C91 and -91a) was made to assess improved performance of the ELT in each category of failure cause and each cause of false alarms. The comparison and analysis resulted in projecting a success of operation rate approximately 3 times the current rate and a reduction in false alarms to 0.25 of those generated by TSO-C91 ELTs. These improvements led to a projection of benefits of approximately 25 additional lives to be saved each year with TSO-C91a ELTs and an improved inspection and maintenance program
Neon, sulphur and argon abundances of planetary nebulae in the sub-solar metallicity Galactic anti-centre
Context: Spectra of planetary nebulae show numerous fine structure emission lines from ionic species, enabling us to study the overall abundances of the nebular material that is ejected into the interstellar medium. The abundances derived from planetary nebula emission show the presence of a metallicity gradient within the disk of the Milky Way up to Galactocentric distances of ∼ 10 kpc, which are consistent with findings from studies of different types of sources, including H II regions and young B-type stars. The radial dependence of these abundances further from the Galactic centre is in dispute.
Aims: We aim to derive the abundances of neon, sulphur and argon from a sample of planetary nebulae towards the Galactic anti- centre, which represent the abundances of the clouds from which they were formed, as they remain unchanged throughout the course of stellar evolution. We then aim to compare these values with similarly analysed data from elsewhere in the Milky Way in order to observe whether the abundance gradient continues in the outskirts of our Galaxy.
Methods: We have observed 23 planetary nebulae at Galactocentric distances of 8–21 kpc with Spitzer IRS. The abundances were calculated from infrared emission lines, for which we observed the main ionisation states of neon, sulphur, and argon, which are little affected by extinction and uncertainties in temperature measurements or fluctuations within the planetary nebula. We have complemented these observations with others from optical studies in the literature, in order to reduce or avoid the need for ionisation correction factors in abundance calculations.
Results: The overall abundances of our sample of planetary nebulae in the Galactic anti-centre are lower than those in the solar neighbourhood. The abundances of neon, sulphur, and argon from these stars are consistent with a metallicity gradient from the solar neighbourhood up to Galactocentric distances of ∼ 20 kpc, albeit with varying degrees of dispersion within the data
Fisher information matrix for single molecules with stochastic trajectories
Tracking of objects in cellular environments has become a vital tool in
molecular cell biology. A particularly important example is single molecule
tracking which enables the study of the motion of a molecule in cellular
environments and provides quantitative information on the behavior of
individual molecules in cellular environments, which were not available before
through bulk studies. Here, we consider a dynamical system where the motion of
an object is modeled by stochastic differential equations (SDEs), and
measurements are the detected photons emitted by the moving fluorescently
labeled object, which occur at discrete time points, corresponding to the
arrival times of a Poisson process, in contrast to uniform time points which
have been commonly used in similar dynamical systems. The measurements are
distributed according to optical diffraction theory, and therefore, they would
be modeled by different distributions, e.g., a Born and Wolf profile for an
out-of-focus molecule. For some special circumstances, Gaussian image models
have been proposed. In this paper, we introduce a stochastic framework in which
we calculate the maximum likelihood estimates of the biophysical parameters of
the molecular interactions, e.g., diffusion and drift coefficients. More
importantly, we develop a general framework to calculate the Cram\'er-Rao lower
bound (CRLB), given by the inverse of the Fisher information matrix, for the
estimation of unknown parameters and use it as a benchmark in the evaluation of
the standard deviation of the estimates. There exists no established method,
even for Gaussian measurements, to systematically calculate the CRLB for the
general motion model that we consider in this paper. We apply the developed
methodology to simulated data of a molecule with linear trajectories and show
that the standard deviation of the estimates matches well with the square root
of the CRLB
Staggered Chiral Perturbation Theory and the Fourth-Root Trick
Staggered chiral perturbation theory (schpt) takes into account the
"fourth-root trick" for reducing unwanted (taste) degrees of freedom with
staggered quarks by multiplying the contribution of each sea quark loop by a
factor of 1/4. In the special case of four staggered fields (four flavors,
nF=4), I show here that certain assumptions about analyticity and phase
structure imply the validity of this procedure for representing the rooting
trick in the chiral sector. I start from the observation that, when the four
flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can
then treat nondegenerate quark masses by expanding around the degenerate limit.
With additional assumptions on decoupling, the result can be extended to the
more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the
one-flavor case is resolved. Coupled with some expected features of unrooted
staggered quarks in the continuum limit, in particular the restoration of taste
symmetry, schpt then implies that the fourth-root trick induces no problems
(for example, a violation of unitarity that persists in the continuum limit) in
the lowest energy sector of staggered lattice QCD. It also says that the theory
with staggered valence quarks and rooted staggered sea quarks behaves like a
simple, partially-quenched theory, not like a "mixed" theory in which sea and
valence quarks have different lattice actions. In most cases, the assumptions
made in this paper are not only sufficient but also necessary for the validity
of schpt, so that a variety of possible new routes for testing this validity
are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and
less tentative discussion in several places; corresponds to published versio
Threshold Photo/Electro Pion Production - Working Group Summary
We summarize the pertinent experimental and theoretical developments in the
field of pion photo- and electroproduction in the threshold region. We discuss
which experiments and which calculations should be done/performed in the
future.Comment: plain TeX (macro included), 6pp, summary talk presented at the
workshop on "Chiral Dynamics: Theory and Experiments", MIT, July 25-29, 199
- …