68 research outputs found

    Canonical lossless state-space systems: Staircase forms and the Schur algorithm

    Get PDF
    A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time lossless systems is presented. The canonical forms have the property that the controllability matrix is positive upper triangular up to a suitable permutation of its columns. This is a generalization of a similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection between these balanced canonical forms for lossless systems and the tangential Schur algorithm for lossless systems is a generalization of the same connection in the SISO case that was noted before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal canonical forms for stable linear systems of given fixed order, which is minimal in the sense that no chart can be left out of the atlas without losing the property that the atlas covers the manifold

    Fisher information matrix for single molecules with stochastic trajectories

    Full text link
    Tracking of objects in cellular environments has become a vital tool in molecular cell biology. A particularly important example is single molecule tracking which enables the study of the motion of a molecule in cellular environments and provides quantitative information on the behavior of individual molecules in cellular environments, which were not available before through bulk studies. Here, we consider a dynamical system where the motion of an object is modeled by stochastic differential equations (SDEs), and measurements are the detected photons emitted by the moving fluorescently labeled object, which occur at discrete time points, corresponding to the arrival times of a Poisson process, in contrast to uniform time points which have been commonly used in similar dynamical systems. The measurements are distributed according to optical diffraction theory, and therefore, they would be modeled by different distributions, e.g., a Born and Wolf profile for an out-of-focus molecule. For some special circumstances, Gaussian image models have been proposed. In this paper, we introduce a stochastic framework in which we calculate the maximum likelihood estimates of the biophysical parameters of the molecular interactions, e.g., diffusion and drift coefficients. More importantly, we develop a general framework to calculate the Cram\'er-Rao lower bound (CRLB), given by the inverse of the Fisher information matrix, for the estimation of unknown parameters and use it as a benchmark in the evaluation of the standard deviation of the estimates. There exists no established method, even for Gaussian measurements, to systematically calculate the CRLB for the general motion model that we consider in this paper. We apply the developed methodology to simulated data of a molecule with linear trajectories and show that the standard deviation of the estimates matches well with the square root of the CRLB

    Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm

    Get PDF
    In this paper, the connections are investigated between two different approaches towards the parametrization of multivariable stable all-pass systems in discrete-time. The first approach involves the tangential Schur algorithm, which employs linear fractional transformations. It stems from the theory of reproducing kernel Hilbert spaces and enables the direct construction of overlapping local parametrizations using Schur parameters and interpolation points. The second approach proceeds in terms of state-space realizations. In the scalar case, a balanced canonical form exists that can also be parametrized by Schur parameters. This canonical form can be constructed recursively, using unitary matrix operations. Here, this procedure is generalized to the multivariable case by establishing the connections with the first approach. It gives rise to balanced realizations and overlapping canonical forms directly in terms of the parameters used in the tangential Schur algorithm
    • …
    corecore