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Abstract

We review the introduction of several types of projection filters. Projection structures com-
ing from information geometry are used to obtain a finite dimensional filter in the form of a
stochastic differential equation (SDE), starting from the exact infinite-dimensional stochastic
partial differential equation (SPDE) for the optimal filter. We start with the Stratonovich pro-
jection filters based on the Hellinger distance as introduced and developed in Brigo, Hanzon
and Le Gland (1998, 1999) [19, 20], where the SPDE is put in Stratonovich form before projec-
tion, hence the term “Stratonovich projection”. The correction step of the filtering algorithm
can be made exact by choosing a suitable exponential family as manifold, there is equivalence
with assumed density filters and numerical examples have been studied. Other authors further
developed these projection filters and we present a brief literature review. A second type of
Stratonovich projection filters was introduced in Armstrong and Brigo (2016) [6] where a direct
L2 metric is used for projection. Projecting on mixtures of densities as a manifold coincides
with Galerkin methods. All the above projection filters lack optimality, as the single vector
fields of the Stratonovich SPDE are projected optimally but the SPDE solution as a whole is
not approximated optimally by the projected SDE solution according to a clear criterion. This
led to the optimal projection filters in Armstrong, Brigo and Rossi Ferrucci (2019, 2018) [10, 9],
based on the Ito vector and Ito jet projections, where several types of mean square distances
between the optimal filter SPDE solution and the sought finite dimensional SDE approxima-
tions are minimized, with numerical examples. After reviewing the above developments, we
conclude with the remaining challenges.

Keywords: Stochastic partial differential equations, Stochastic differential equations, SPDEs
projection on a submanifold, Stratonovich projection, Itô-vector projection, Itô-jet projection, Non-
linear Filtering, Projection filters, Stratonovich projection filters, Optimal projection filters.
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1 Introduction and history

1.1 Information geometry as the differential geometric approach to statis-
tics

Information Geometry is an informal term to describe the differential geometric approach to statis-
tics, or more precisely to study the differential geometric properties of sets of probability distribu-
tions, on which a manifold structure is usually built, leading to so called statistical manifolds. A
list of references, far from being comprehensive, describing the evolution of the discipline include
C. R. Rao 1945 [48], interpreting the Fisher matrix for a parametric family of distributions as a
Riemannian metric on the given finite-dimensional statistical manifold, the dimension being usually
related to the number of parameters. It is important for our paper to point out that the Fisher in-
formation matrix is related naturally to the Hellinger distance on more general infinite-dimensional
spaces of probability measures, a distance based on the L2 structure of sets of square roots of prob-
ability densities. Nand Lal Aggarwal (1974)[1], Shun'ichi Amari (1985) [3], Ole Barndorff-Nielsen
(1978) [13] and Giovanni Pistone (Pistone and Sempi 1995 [47]) are other important references that
contributed to the development of information geometry and are related to this article, although
this list is far from being comprehensive.

1.2 Information geometry and filtering dynamics

Our work concerns the application of information geometry to approximation of dynamics of prob-
ability distributions, in most cases stemming from the stochastic filtering problem.

To state it in basic terms, in stochastic filtering one observes a random signal perturbed by
random noise. The unperturbed random signal cannot be observed but needs to be estimated. For
example, the perturbed signal could be the radar reading of the position of a spacecraft, which
would not provide the exact position of the spacecraft due to several disturbances (“noise”) in the
radar observations. It would then be necessary to estimate the real position of the spacecraft from
the noisy radar readings. This is a filtering problem. A filtering algorithm was used in the Apollo
11 mission (Cipra 1993 [24]), the first human landing on the moon. Filtering has also applications
in areas such as water level estimation and prediction, submarine navigation, econometrics, target
tracking and many others. A good historical book on filtering with an eye to applications is
Jazwinski (1970) [36], see also Maybeck (1982) [43], while the mathematical aspects are considered
fully in Liptser and Shiryayev (1978) [41]. More recent monographs on filtering are Ahmed (1998)
[2] and Bain and Crisan (2009) [12].

The general solution of the filtering problem at a given time is given by the probability density
of the unperturbed state of the system at that time, conditional on the perturbed observations
up to the given time. When the unobserved signal and the observed signal evolve in continuous
time, the filter density follows a stochastic partial differential equation (SPDE). It has been shown
that this probability density, the solution of the SPDE, does not evolve in a finite dimensional
statistical manifold, except in very special cases. For example, if the dynamics of the unobserved
system is linear, the observations are linear, the noises are Gaussian and the initial condition of the
unperturbed signal is also Gaussian (or deterministic), then the filter is Gaussian and its density can
be characterized by a finite dimensional set of parameters, namely the mean vector and variance-
covariance matrix of the resulting Gaussian distribution. This leads to the celebrated Kalman filter.
However, this does not happen usually, in the non-linear case, and the filter is infinite dimensional
in general, as shown for the cubic sensor example by Hazewinkel, Marcus and Sussmann (1983)
[34].
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1.3 Classic projection filters: Stratonovich–Hellinger projection

Enters information geometry. Can information geometry provide us with a method to approximate
the infinite-dimensional filter with a finite-dimensional approximation that is close to the original
filter? The idea to apply the Fisher Metric and Hellinger distance to this problem was first sketched
in an article of Bernard Hanzon (1987) [32] while he was working at the Technical University of
Delft. Hanzon suggested to project the SPDE equation in Stratonovich form for the evolution of
the filter density onto a finite dimensional statistical manifold, using the Fisher metric/Hellinger
distance. We call this “Stratonovich projection” and it consists in projecting the separate vector
fields of the SPDE corresponding to the drift and diffusion part of the Stratonovich version. The
projected equation would describe a finite dimensional density evolution, called projection filter,
approximating the full filter evolution associated with the optimal filter. The paper was presented
to a conference in Lancaster whose proceedings were edited by Christopher T. J. Dodson, in a
volume with the almost prophetic title “Geometrization of Statistical Theory”. The following year,
on August 22, 1988, Hanzon presented the idea at a seminar in Tokyo University called “The
Projection Filter” while visiting Shun'ichi Amari. A few years later, in 1991, Hanzon and a PhD
student Ruud Hut also from Technical University of Delft, wrote the paper Hanzon and Hut [31]
with new results on the projection filter on Gaussian densities, showing that for the Gaussian family
the projection filter coincides with a heuristic-based family of finite dimensional filters, the assumed
density filters, previously studied by Harold Kushner (1967) [38], see also [43].

The projection filter idea was formulated precisely, extended and made fully rigorous in subse-
quent works, during the PhD studies of Damiano Brigo with Bernard Hanzon at the Free University
of Amsterdam and with Francois LeGland at IRISA/INRIA, in Rennes, France, in 1993–1996 [16].
In these studies it was shown, among other things, that exponential families played a very partic-
ular role in the projection filter, allowing for the correction step of the filtering algorithm to be
exact, and also fully generalizing the equivalence to the assumed density filters. The filters were
tested numerically on some examples. During his PhD, Brigo also authored other papers on small
observation noise for the Gaussian projection filter [15, 17] and on approximations of the Fokker-
Planck-Kolmogorov equation, as well as formulations of the filter in discrete time using the Kullback
Leibler information, with application to volatility modeling in finance [18]. The main results on the
projection filters were published later in Brigo, Hanzon and LeGland (1998, 1999) [19, 20].

One of the key issues, from the start, was making sure that the given approximated equation for
the filter density would stay on the chosen statistical manifold. The Stratonovich projection ensured
this, but scholars had been studying the behaviour of stochastic differential equations on manifolds
independently of the filtering application above. Among those, we refer to David Elworthy (1988)
[27], Michel Emery (1989) [29], and more recently Elton Hsu (2002) [35]. We also notice that
Elworthy, Le Jan and Li (2010) would discuss geometric aspects of filtering theory in [28], although
their book does not deal with projection filters.

1.4 Classic projection filters: Stratonovich–direct L2 projection

Brigo returned to the filtering problem as a side project in 2011 after he moved from a managing
director position in the financial industry to a full academic position as Gilbart Chair at the De-
partment of Mathematics of King’s College London, earlier in 2010. There, in 2011 he met a new
colleague, John Armstrong, a differential geometry PhD from Oxford who had worked on almost
Kähler geometry and who also had spent several years in the financial industry and was now turning
to a full-time academic career. Brigo explained the filtering problem to Armstrong, who grasped
immediately the essential ideas and the mathematics. Brigo had already written a preprint on his
new idea of applying the direct L2 structure without square roots to obtain a new type of projection
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filter, showing equivalence with Galerkin-based filters when using mixtures of distributions. Arm-
strong refined the idea and implemented the filter numerically, studying the cubic sensor problem.
This led to a second wave of projection filters based on the direct L2 metric as opposed to the
Hellinger distance. It turned out that, as anticipated in the preprint, while the original Hellinger-
based filters worked well with exponential families, being equivalent to assumed density filters, the
direct L2 filters worked best with mixture families, being equivalent to Galerkin-based filters. This
research went on in 2011-2013 and was published in Armstrong and Brigo (2016) [6]. By 2012 Brigo
had moved to Imperial College. During the review of [6], one of the reviewers asked in which sense,
or according to which criterion, the projection filter was providing an optimal approximation of the
true filter.

1.5 Is the classic projection filter an optimal approximation?

The essence of the problem of optimality of the approximation was based on the way the filtering
equation was projected in the projection filter works published until then, mainly [19, 20, 6]. There
are two stochastic calculi, Ito and Stratonovich. The two different calculi are suited to different
applications, but from a probabilistic point of view the Ito calculus has a more clear interpretation
of the stochastic equation coefficients in terms of local mean and local standard deviation, linked to
the martingale property. Also, it is believed that even when one works with Stratonovich calculus,
under the formalism one can argue that it is still the Ito calculus that “does all the work” (Rogers
and Williams (1987) [49], Chapter V.30, p. 184). The problem with Ito calculus is that it violates
the chain rule for change of variables. When changing variables, one has to use Ito’s formula,
involving a second order term in the transformation.

The true, infinite dimensional filter equation (taking the form of a stochastic partial differential
equation, or SPDE) had always been written in Stratonovich form in the previous projection filter
works, because in a Stratonovich stochastic equation the two parts describing the drift term and
the diffusion coefficient term obey the chain rule under change of variables. This means that they
can be interpreted as vector fields and be projected without problems on the tangent space of a
submanifold, obtaining vector fields in the submanifolds that would form the approximating finite
dimensional stochastic differential equation.

Projecting directly the Ito equation does not work, because the change of variables includes
second order terms that do not resemble the behaviour of vector fields. Projection becomes then
impossible to perform directly in Ito form. One could re-write the Ito true filter stochastic equation
in Stratonovich form, project it, obtain a finite dimensional approximated filter, and transform
back this approximate filter equation from Stratonovich to Ito form. But in what sense is this
approximation optimal? What criterion does it minimize?

More in detail, the projection of a vector field always provides the best approximation of the
original vector field. But a stochastic equation is given by two terms, the drift and the diffusion
part, and if one puts the equation in Stratonovich form, the drift and the diffusion coefficients
become described by two vector fields and as such can be projected. As the two vector fields are
projected, each projected vector field will be the best approximation of the original vector field,
but what does this mean for the solution of the stochastic equation as a whole? The stochastic
equation is not just the pair of vector fields. In fact, when the equation is in Ito form, the drift and
the diffusion coefficients interact when changing variables or coordinates, involving second order
terms in the transformation. The fact that Stratonovich is “less good” probabilistically means that
putting together two optimal projections of the coefficients to form a single Stratonovich equation
does not provide a solution that is optimal in a probabilistic sense, for example in mean square.
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1.6 Finding optimal projection filters

Armstrong had previously noticed that an Ito equation behaved exactly as a geometric object he was
familiar with, called a 2-jet. Brigo, while helping Armstrong in developing the 2-jet interpretation
of stochastic differential equations, started looking at the Schwartz Morphism as studied in Emery
(1989) [29] and found it to be very close to the 2-jet approach. The 2-jet interpretation was published
in Armstrong and Brigo (2017, 2018) [7, 8], which led next to Armstrong and Brigo investigating
how one could project a stochastic differential equation on a sub-manifold in an optimal way. Based
on Ito Taylor expansions, two different projections satisfying two different types of optimality were
found, the Ito-vector and the Ito-jet projections. The Ito-jet projection is superior in terms of
optimality, in that it has a higher order of optimality in a precise sense. These results were presented
at ICMS in Edinburgh by Armstrong and Brigo (2016) [5], at a conference co-organized in 2015
again by Dodson, this time with Frank Critchley and Frank Nielsen. The two projections were
studied further and some technical problems concerning tubular neighborhoods were solved with
the help of the then PhD student Emilio Rossi Ferrucci, leading to the publication Armstrong, Brigo
and Rossi Ferrucci (2019) [10], see also Armstrong, Brigo and Rossi Ferrucci (2018) [9], where Rossi
Ferrucci helped re-derive the optimal projections through constrained optimizations as opposed to
Ito Taylor expansions, and where ambient coordinates are used.

In this last paper [10], information geometry comes back as an application of the now optimal
projections both in Hellinger distance and direct L2 metric, comparing them in a numerical case
with the traditional Stratonovich projection of previous works. It turns out that Stratonovich is
also optimal for a particular criterion that is, however, not a particularly interesting or natural one,
so that the Ito-jet projection filter should be preferred in general.

In this paper we will first present a literature review of projection filtering as done by other
authors, following the original papers [19, 20], and then we will explain the basic ideas of the
optimal projection filters as compared to the Stratonovich ones. We will finally sketch future
problems where information geometry might give a contribution. For the reader’s convenience, we
summarize the different projection filtering approaches in Table 1.

Metric → Hellinger Direct L2

Projection ↓
Stratonovich Stratonovich “classic” PF Stratonovich “classic” PF
projection exponential families [19, 20] mixture families [6]
Ito-vector Optimal Ito-vector PF Optimal Ito-vector PF
projection Gaussian family [10] Gaussian family [10]

exponential families? mixture families?
Ito-jet Optimal Ito-jet PF Optimal Ito-jet PF

projection Gaussian familiy [10] Gaussian family [10]
exponential families? mixture families?

Table 1: A simplified classification of projection filters (PFs).

2 Other works based on the classic projection filters

Our original work on projection filters was further studied and applied to several fields by subsequent
authors. Here we mention only a few examples to illustrate the breadth of the possible use of
information geometry and dynamics in applications.
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Jones and Soatto (2011) [37] briefly mention the projection filter as one of the possible algo-
rithms for on-line estimation in the context of visual-inertial navigation, mapping and localization.
Lermusiaux (2006) [40] mentions the projection filter as a possible tool for estimation of uncer-
tainties for ocean dynamics. Kutschireiter, Rast, and Drugowitsch (2022)[39] apply the projection
filter to continuous time circular filtering. Projection filters have been applied to quantum sys-
tems for example in van Handel and Mabuchi (2005) [52] and in Gao, Zhang and Petersen (2019)
[30]. Ma, Zhao, Chen and Chang (2015) [42] apply projection filters to hazard position estima-
tion. Vellekoop and Clark (2006)[53] extend the projection filter theory to deal with changepoint
detection. Tronarpand and Särkkä (2019) [51] present a projection filter for systems with discrete
time measurement having arbitrary likelihoods. Surace and Pfister (2017) [50] apply the Gaussian
projection filter to estimate the parameters of a partially observed diffusion. Harel, Meir and Opper
(2015)[33] apply the assumed density filters, equivalent to the projection filters, to the filtering of
optimal point processes with applications to neural encoding. Azimi-Sadjadi and Krishnaprasad
(2005)[11] apply projection filter algorithms to navigation. Bröcker and Parlitz (2000)[23] apply
projection filter techniques to address noise reduction in chaotic time series. Zhang, Wang, Wu and
Xu (2014)[54] apply the Gaussian projection filter as part of their estimation technique to deal with
measurements of fiber diameters in melt-blown nonwovens. The projection filter further attracted
the attention of the Swedish Defense Research Agency, that summarized and studied it in 2003 in
the report [14].

3 Optimal projection filters for non-linear filtering via infor-
mation geometry

We studied the application of the new projections to nonlinear filtering via information geometry
in Armstrong, Brigo and Rossi Ferrucci (2019) [10]. Here we summarize the results of that paper,
showing how our new projection methods work for stochastic filtering. As explained in the intro-
duction, this enhances optimality of the approximations compared to our previous works in [19],
[20] and [6].

Let us first summarize the filtering problem for diffusions. One has a signal X that evolves
according to a SDE, and observes a process Y which is a function of this signal plus noise.

The filtering problem consists in estimating the signal X given the present and past observations
Y . If t is the current time, the solution of the filtering problem is the probability density of the
state Xt conditional on the observations from time 0 to time t, call this density pt. The density pt
follows the Kushner-Stratonovich (or alternatively the Zakai) stochastic partial differential equation
(SPDE) that, under some technical assumptions, can be seen as a stochastic differential equation
in the infinite dimensional L2 space of square roots of densities (Hellinger metric) or of densities
themselves (direct L2 metric).

The process we wish to approximate on a low dimensional manifold is pt, evolving in the L2

infinite dimensional space, while the submanifoldM where we seek approximation is a finite dimen-
sional family of probability densities parametrized by θ, acting as coordinates: M = {p(·, θ), θ ∈
Θ ⊂ Rn}. We aim at finding a SDE for θ such that p(·, θt) approximates the optimal filter pt(·) in
an optimal way.
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3.1 The Kushner Stratonovich equation

We suppose that the state Xt ∈ Rm of a system evolves according to the Itô stochastic differential
equation:

dXt = f(Xt, t) dt+ σ(Xt, t) dWt

where f and σ are smooth Rm valued functions and Wt is a Brownian motion. One typically adds
growth conditions to ensure a global existence and uniqueness result for the signal equation, see for
example [6] and references therein for the details.

We suppose that an associated process, the observation process, Yt ∈ Rd evolves according to
the equation:

dYt = b(Xt, t) dt+ dVt

where b is a smooth Rd valued function and Vt is a Brownian motion independent of Wt. Note that
the filtering problem is often formulated with an additional constant in terms of the observation
noise. For simplicity we have assumed that the system is scaled so that this can be omitted.

The filtering problem is to compute the conditional distribution of Xt given a prior distribution
for X0 and the values of Y for all times up to and including t.

Subject to various bounds on the growth of the coefficients of this equation, the assumption
that the distribution has a density pt and suitable bounds on the growth of pt one can show that
pt satisfies the Kushner–Stratonovich SPDE:

dpt = L∗
t pt dt+ pt[b(·, t)− Ept(b(·, t))]T [dYt − Ept(b(·, t))dt] (1)

where Ep denotes the expectation with respect to the density p,

Ep[ψ] =

∫
ψ(x)p(x)dx, Ep[ϕ(·, t)] =

∫
ϕ(x, t)p(x)dx,

and the forward diffusion operator L∗
t is defined by:

L∗
tϕ = − ∂

∂xi
[fi(x, t)ϕ] +

1

2

∂2

∂xi∂xj
[aij(x, t)ϕ] (2)

where a = σσT . Note that we are using the Einstein summation convention in this expression.
In the event that the coefficient functions f and b are all linear and σ is a deterministic function

of time one can show that so long as the prior distribution for X is Gaussian, or deterministic,
the density p will be Gaussian at all subsequent times. This allows one to reduce the infinite
dimensional equation (1) to a finite dimensional stochastic differential equation for the mean and
covariance matrix of this normal distribution. This finite dimensional problem solution is known
as the Kalman filter.

For more general coefficient functions, however, equation (1) cannot be reduced to a finite di-
mensional problem [34]. Instead one might seek approximate solutions of (1) that belong to some
given statistical family of densities. This is a very general setup and includes, for example, approx-
imating the density using piecewise linear functions to derive a finite difference approximation or
approximating the density with Hermite polynomials to derive a spectral method. Other examples
include exponential families (considered in [20, 19]) and mixture families (considered in [4, 6]).

Our projection theory tells us how one can find good approximations on a given statistical family
with respect to a given metric on the space of distributions. We illustrate this by writing down the
Itô-vector and Itô-jet projection of (1) for the L2 and Hellinger metrics onto a general manifold1.

1Note that it is also possible to consider projecting the Zakai equation. However, as explained in [6], one expects
that projecting the Kushner–Stratonovich equation will lead to smaller error terms in direct metric, whereas the
projected equations are the same in Hellinger metric. See [6] for a discussion
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A good part of the classic filtering literature focuses on the very specific case of seeking approxi-
mate solutions using Gaussian distributions. The idea of approximating the solution to the filtering
problem using a Gaussian distribution has been considered by numerous authors who have derived
variously, the extended Kalman filter [46], assumed density filters [38] and Stratonovich projection
filters [19]. Some of these are related, for example the assumed density filters and Stratonovich pro-
jection filters in Hellinger metrics for Gaussian (and more generally exponential) families coincide
[20]. Using our projection methods, we have been able to derive projection filters which outperform
all these other filters also in the specific Gaussian case (assuming performance is measured over
small time intervals using the appropriate Hilbert space metric).

We will be using L2 geometry here. More generally, for the the geometry of approximations
to the infinite dimensional filtering problems based on L2 or Orlicz charts we refer for example to
[19, 20, 6, 10, 21, 22, 44, 45].

3.2 Stratonovich projections

The Stratonovich projection filters have been abundantly studied in [19, 20] in Hellinger metric,
and in [6] in direct metric, see also references in Section 2 for the Hellinger case. Here we briefly
summarize them. To shorten notation, we will omit time dependence when obvious from the context,
so p = pt, b = b(·, t), and so on. For this method, the optimal filter SPDE is given by putting the
optimal filter equation (1) in Stratonovich form, obtaining

dp = L∗ p dt− 1

2
p [|b|2 − Ep{|b|2}] dt+ p [b− Ep{b}]T ◦ dY . (3)

For convenience, let us rewrite this as

dp = Adt+B ◦ dY . (4)

This is a Stratonovich SPDE. The P in SPDE and the particular type of SPDE we have imply
that, in general, the solution p will not belong to any finite dimensional family of densitities M =
{p(·, θ), θ ∈ Θ ⊂ Rn}. As every computer implementation is inherently finite dimensional, we need
a way to get pt approximated through a finite dimensional density p(·, θt) for all times t.

Now, with the Stratonovich filter SPDE equation above, one can do something very simple.
Since the Stratonovich SPDE satisfies the chain rule, A and B behave like two vector fields in a
suitable function space. So the equation is characterized by a “dt” vector field A and a “dYt” vector
field B. These are two separate vector fields and for the time being we are content with dealing
with them separately, but as we will discuss later this is not a choice without consequences. Dealing
with A and B separately, one can project them on the tangent space of M = {p(·, θ), θ ∈ Θ ⊂ Rn}
(direct metric) or of their square roots (Hellinger metric) obtaining, in the direct metric case for
example,

dp(·, θt) = Πp(·,θt)[A] dt+Πp(·,θt)[B] ◦ dY (5)

where Π is the tangent space projection at the denoted point for the manifold M . Applying the
chain rule gives immediately a finite dimensional SDE for dθt from the above equation, where the
coefficients are known and where the SDE can be implemented easily in a finite dimensional setting,
giving a finite dimensional filter.

This is basically the L2 direct metric or Hellinger projection filter in a nutshell, it has been
studied and implemented in [19, 20, 6] and by a number of subsequent authors, as summarized in
Section 2.
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We conclude the summary of the Stratonovich projections by saying that they do satisfy an
optimality critierion, although it is a criterion that is somewhat unnatural and not helpful. It
requires to run an artificial filter in negative time and to include it into the criterion to be minimized.
This is summarized in Table 2.

3.3 Itô-vector projections

Let us go back to our exact filter equation in Stratonivich form (4):

dp = Adt+B ◦ dY .

Now in the Stratonovich projection filters we projected separately the vector fields A and B obtain-
ing a projected equation. By nature, the projection is the best (optimal) approximation for A and
B separately on the chosen manifold tangent space. However, does this translate into an optimality
of the solution p(·, θt+δt) as an approximation of the exact pt+δt for say small δt, given that we had
the optimal filter up to t and now we wish to approximate the next step δt (in most cases t = 0 as
we will seek an optimal approximation from time 0)? In other terms, is there a norm ∥ · ∥ for which
we can say that in some sense

θt+δt ≈ argminθ ∥pt+δt − p(·, θt+δt)∥ (6)

so long as δt is small? This is a very legitimate question, and it comes from the fact that the
two vector fields of a SDE or SPDE (A and B in our example) interact in a very specific way in
determining the solution. If we agree it is the Ito solution we are considering primarily (Rogers and
Williams (1987) [49], Chapter V.30, p. 184), note that to transform a Stratonovich SDE into an
Ito one with the same solution, the drift A is modified by terms involving partial derivatives of the
term B. In the Ito form, therefore, there is no neat separation into two vector fields. Not just that,
but the behaviour of the solution of the SDE or SPDE as a whole is more than the behaviour of
the two separate vector fields A and B. This is why the optimality of the separate projections of A
and B does not guarantee any optimality of the type sought in (6). Consider then (1) and write it
as

dp = Cdt+BdYt.

Again, this is a SPDE, this time in Ito form, and has an infinite dimensional solution in general.
The Ito-vector projection sets out to approach the problem starting from a criterion like (6).

It does not resort to a Stratonovich version of the Kushner-Stratonovich equation but keeps the
original Ito version.

Let us choose a norm for the space of densities, ∥ · ∥ which might be the direct metric or the
Hellinger metric.

Given the diffusion term in the approximating equation minimizing (but not zeroing) the δt term
of the expansion for the mean square difference Et[∥pt+δt−p(·, θt+δt)∥2], we find the drift term that
minimizes the (δt)2 term of the same difference while holding the earlier diffusion term fixed. Note
that the δt order term is minimized, not zeroed, so that we do not attain (δt)2 convergence.

As a bonus, we also minimize the order 1 Taylor expansion (in t) of the norm of the expectation
of the difference between the optimal filter pt+δt and p(·, θt+δt), namely ∥E[pt+δt − p(·, θt+δt)]∥.

To achieve (δt)2 convergence, rather than δt convergence, we will need the Ito-jet projection.
Finally, the expectation Et is necessary because one should not forget that p and p(·, θ) are

random objects. The randomness of p, in particular, comes from Y and the random θ is supposed
to capture it optimally.
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3.4 Itô-jet projection

The Ito jet projection uses the notion of metric projection.
The metric projection of a general density p in L2 onto the manifold M is the closest point on

M to p and is denoted by π(p). This is not a vector projection, it is a projection of a point onto
the submanifold M . Given that the metric projection is, according to the chosen metric, the best
we can ever do in approximating p on M , as it is the closest point on M to p, we can try to find a
projection filter that gets as close as possible to the metric projection. In other term, our criterion
has changed to

θt+δt ≈ argminθ ∥π(pt+δt)− p(·, θt+δt)∥ (7)

The Ito jet projection satisfies the following optimality criterion: it zeros the δt term and
minimizes the (δt)2 term of the Taylor expansion of the mean square of the distance in L2 or M
between π(pt+δt) and p(·, θt+δt). This is the most optimal projection we derived and it converges
with order (δt)2, as opposed to the (δt)1 of the Ito vector projection.

Again, in real applications we won’t have the optimal filter at time t so we will start our
approximation directly at time t = 0. This is reflected in the summary table 2 where t = 0 and we
call δt with the name t, assuming it is small.

3.5 Comparison of filters

In [10] we compare the different projection filters with each other in a case of cubic sensor perturbing
a linear system (where, without perturbation, the Kalman filter would work well). In other words,
the state equation is trivial, dX = dW , while the observation function is b(x) = x+ εx3. For small
ε, this will be close to a linear system and the extended Kalman filter and other Gaussian filters
are supposed to perform well. We make the comparison in [10], comparing the different projection
filters with the extended Kalman filter and with the Ito assumed density filter (ADF) with assumed
Gaussian density. We refer to the paper for the full details.

In [10] we compare first the direct L2 residuals for the various methods. The Itô-vector projection
in the direct L2 metric results in the lowest residuals over short time horizons. The Stratonovich
projection comes a close second. Over medium time horizons, the Itô-jet projection out performs
the Itô-vector projection. The projection methods out-performed all other methods like extended
Kalman filter or assumed density filters.

Second, in [10] we compared the Hellinger residuals for different filters, where projection filters
are w.r.t. the Hellinger metric. This second analysis indicates that the Itô ADF and the Itô-jet
projection are almost indistinguishable in their performance, and we explain why in [10]. Over
the short term, the Itô-vector projection gives the best results. Over medium term, the Itô-jet
projection and the Itô ADF give the best results.

We also note that in previous works such as [19, 20, 6] where we only studied the Stratonovich
projection filter, filtering problems for systems like the cubic and quadratic sensors were studied.
For such systems, the optimal filter density would often turn out to be bimodal and a projection
filter based on a manifold consisting of mixtures of two Gaussians or of exponential families with
fourth order polynomial exponents would track the optimal filter well, while approximated filters
such as the Extended Kalman filter, Gaussian Assumed Density filters and even particle filters with
the same number of parameters as the projection filters would fare worse than the projection filters
in terms of L2, Hellinger or Lévy–Prokhorov norms of errors.

We may conclude that information geometry based filters contributed in a relevant way to finite
dimensional approximations of the optimal filter.
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4 Conclusions and further work

The notion of projecting a vector field onto a manifold is unambiguous. By contrast, there are
multiple distinct generalizations of this notion to SDEs, as summarized in Table 2.

The two Itô projections we recalled in this review can both be derived from minimization
arguments. However, the Itô-jet projection has some clear advantages.

� The Itô-jet projection is the best approximation to the metric projection of the true solution
and leads to a mean-squared error of order O(t2). By contrast, the Itô-vector projection only
tracks the true solution with an accuracy of O(t) for the mean-square error.

� The Itô-jet projection gives a more intuitive answer than the Itô-vector projection for the low
dimensional example of the cross-diffusion considered in [10].

� The Itô-jet projection gives better numerical results in the longer term than the Itô-vector
projection in our application to filtering.

� The Itô-jet projection has an elegant definition when written in terms of 2-jets, which is
described in [10].

The Stratonovich projection satisfies an ad hoc minimization that is less appealing than the
ones of the Itô projections, since it requires a deterministic anchor point at time 0 and negative
time copies of the processes. The Itô-jet and Itô-vector projection arguments allow one to derive
new Gaussian approximations to non-linear filters, and new exponential and mixture filters more
generally, although the more general cases have not been explored in [10]. Some of the possibilities
with different projections, metrics and manifolds are shown in Table 1. This could be investigated
in further work to complete the table. In the Gaussian case we do explore in [10] applying the
methods summarized in this review, unlike previous Gaussian approximations to non-linear filters,
the projection approximations are derived by fully explicit minimization arguments rather than
heuristic arguments. Thus, the notion of projecting an SDE onto a manifold, coupled with infor-
mation geometry, is able to give new results even for this well-worn topic of approximate Gaussian
nonlinear filtering.

A further important investigation line could be in deriving approximations based on approx-
imating bases that are not made of densities or their square roots. Working with densities has
the advantage of allowing information geometry to act clearly, but at the same time puts strong
constraints on the approximating bases. As a simple example, one might wish to use “mixtures”
of Hermite polynomials, which are not densities, as a basis for the approximation. One might wish
to investigate to what extent it is possible to use non-density bases while retaining an information
geometric approach.

The above development might potentially ease another fundamental problem that remains to
this day: controlling the long term error of the projection filter compared to the optimal filter.
This is a very difficult problem in general. Again in an information geometry setting, when the
unobserved signal process X is a finite-state Markov chain, Cohen and Fausti (2023) [25] derive
results on a well-controlled error, based on ergodic theory and symplectic structures. This result
builds on their previous work [26]. The theory needs to be extended to the diffusion setting we
have been using here, but this is a promising result in controlling the long term error between the
optimal filter and the projection filter.
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Projection Optimality property

Itô-vector (i) Minimizes order 1 Taylor expansion (in t) of norm
of the expectation of the difference between pt &
p(·, θt), namely ∥E[pt − p(·, θt)]∥
(ii) Given the diffusion term in the approximating
equation minimizing (but not zeroing) the t term of
the expansion for the mean square difference
E[∥pt−p(·, θt)∥2], finds the drift term that minimizes
the t2 term while holding that diffusion term fixed.
Order O(t) convergence.

Itô-jet Zeroes t term and minimizes t2 term of Taylor ex-
pansion of the mean square of the distance in L2 or
M between π(pt) and p(·, θt). Order O(t2) conver-
gence.

Stratonovich Similar to Itô vector but for the Taylor series of the
“time-symmetric” mean square difference between p
and its lower dimensional approximation p(·, θt):

1

2

(
E[∥p−t − p(·, θ−t)∥2] + E[∥pt − p(·, θt)∥2]

)
where negative time processes are defined ad hoc by
propagating a second input Brownian motion back-
ward in time.

Table 2: Projections and the associated optimality criteria
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