211 research outputs found

    Baryon magnetic moments in the external field method

    Full text link
    We present a calculation of the magnetic moments of the baryon octet and decuplet using the external field method and standard Wilson gauge and fermion actions in the quenched approximation. Progressively smaller static magnetic fields are introduced on a 24424^4 latticeat beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the external field.Comment: Lattice2004 (weak matrix elements), 3 pages, 8 figure

    Magnetic polarizability of hadrons from lattice QCD

    Full text link
    We extract the magnetic polarizability from the quadratic response of a hadron's mass shift in progressively small static magnetic fields. The calculation is done on a 24x12x12x24 lattice at a = 0.17 fm with an improved gauge action and the clover quark action. The results are compared to those from experiments and models where available.Comment: 3 pages, 3 figures, contribution to Lattice 2002 (spectrum

    Overlap Fermions on a 20420^4 Lattice

    Get PDF
    We report results on hadron masses, fitting of the quenched chiral log, and quark masses from Neuberger's overlap fermion on a quenched 20420^4 lattice with lattice spacing a=0.15a = 0.15 fm. We used the improved gauge action which is shown to lower the density of small eigenvalues for H2H^2 as compared to the Wilson gauge action. This makes the calculation feasible on 64 nodes of CRAY-T3E. Also presented is the pion mass on a small volume (63×126^3 \times 12 with a Wilson gauge action at β=5.7\beta = 5.7). We find that for configurations that the topological charge Q0Q \ne 0, the pion mass tends to a constant and for configurations with trivial topology, it approaches zero possibly linearly with the quark mass.Comment: Lattice 2000 (Chiral Fermion), 4 pages, 4 figure

    Baryon magnetic moments in the background field method

    Full text link
    We present a calculation of the magnetic moments for the baryon octet and decuplet using the background-field method and standard Wilson gauge and fermion actions in the quenched approximation of lattice QCD. Progressively smaller static magnetic fields are introduced on a 24424^4 lattice at beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the background field.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Lett.

    A Lattice Study of the Nucleon Excited States with Domain Wall Fermions

    Get PDF
    We present results of our numerical calculation of the mass spectrum for isospin one-half and spin one-half non-strange baryons, i.e. the ground and excited states of the nucleon, in quenched lattice QCD. We use a new lattice discretization scheme for fermions, domain wall fermions, which possess almost exact chiral symmetry at non-zero lattice spacing. We make a systematic investigation of the negative-parity NN^* spectrum by using two distinct interpolating operators at β=6/g2=6.0\beta=6/g^2=6.0 on a 163×32×1616^3 \times 32 \times 16 lattice. The mass estimates extracted from the two operators are consistent with each other. The observed large mass splitting between this state, N(1535)N^*(1535), and the positive-parity ground state, the nucleon N(939), is well reproduced by our calculations. We have also calculated the mass of the first positive-parity excited state and found that it is heavier than the negative-parity excited state for the quark masses studied.Comment: 46 pages, REVTeX, 11 figures included, revised version accepted for publication in Phys. Rev.

    Chiral Behaviour of the Rho Meson in Lattice QCD

    Get PDF
    In order to guide the extrapolation of the mass of the rho meson calculated in lattice QCD with dynamical fermions, we study the contributions to its self-energy which vary most rapidly as the quark mass approaches zero; from the processes ρωπ\rho \to \omega \pi and ρππ\rho \to \pi \pi. It turns out that in analysing the most recent data from CP-PACS it is crucial to estimate the self-energy from ρππ\rho \to \pi \pi using the same grid of discrete momenta as included implicitly in the lattice simulation. The correction associated with the continuum, infinite volume limit can then be found by calculating the corresponding integrals exactly. Our error analysis suggests that a factor of 10 improvement in statistics at the lowest quark mass for which data currently exists would allow one to determine the physical rho mass to within 5%. Finally, our analysis throws new light on a long-standing problem with the J-parameter.Comment: 13 pages, 7 figures. Full analytic forms of the self-energies are included and a correction in the omega-pi self-energ

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Quasifree eta photoproduction from nuclei and medium modifications of resonances

    Full text link
    We investigate the sensitivity of the differential cross section, recoil nucleon polarization and the photon asymmetry to changes in the elementary amplitude, medium modifications of the resonance (S11,D13)(S_{11},D_{13}) masses, as well as nuclear target effects. All calculations are performed within a relativistic plane wave impulse approximation formalism resulting in analytical expressions for all observables. The spin observables are shown to be unique tools to study subtle effects that are not accessible by only looking at the unpolarized differential cross section.Comment: 27 pages, 8 figures, Revtex, To be published in Phys. Rev.

    Electromagnetic superconductivity of vacuum induced by strong magnetic field

    Full text link
    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (the rho-meson electrodynamics). We discuss various properties of the new phase such as absence of the Meissner effect, anisotropy of superconductivity, spatial inhomogeneity of ground state, emergence of a neutral superfluid component in the ground state and presence of new topological vortices in the quark-antiquark condensates.Comment: 37 pages, 14 figures, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Generalized Parton Distributions from Hadronic Observables: Non-Zero Skewness

    Full text link
    We propose a physically motivated parametrization for the unpolarized generalized parton distributions, H and E, valid at both zero and non-zero values of the skewness variable, \zeta. Our approach follows a previous detailed study of the \zeta=0 case where H and E were determined using constraints from simultaneous fits of the experimental data on both the nucleon elastic form factors and the deep inelastic structure functions in the non singlet sector. Additional constraints at \zeta \neq 0 are provided by lattice calculations of the higher moments of generalized parton distributions. We illustrate a method for extracting generalized parton distributions from lattice moments based on a reconstruction using sets of orthogonal polynomials. The inclusion in our fit of data on Deeply Virtual Compton Scattering is also discussed. Our method provides a step towards a model independent extraction of generalized distributions from the data. It also provides an alternative to double distributions based phenomenological models in that we are able to satisfy the polynomiality condition by construction, using a combination of experimental data and lattice, without resorting to any specific mathematical construct.Comment: 29 pages, 8 figures; added references, changed text in several place
    corecore