430 research outputs found

    Large-eddy simulation of the turbulent mixing layer

    Get PDF
    Six subgrid models for the turbulent stress tensor are tested by conducting large-eddy simulations (LES) of the weakly compressible temporal mixing layer: the Smagorinsky, similarity, gradient, dynamic eddy-viscosity, dynamic mixed and dynamic Clark models. The last three models are variations of the first three models using the dynamic approach. Two sets of simulations are performed in order to assess the quality of the six models. The LES results corresponding to the first set are compared with filtered results obtained from a direct numerical simulation (DNS). It appears that the dynamic models lead to more accurate results than the non-dynamic models tested. An adequate mechanism to dissipate energy from resolved to subgrid scales is essential. The dynamic models have this property, but the Smagorinsky model is too dissipative during transition, whereas the similarity and gradient models are not sufficiently dissipative for the smallest resolved scales. In this set of simulations, at moderate Reynolds number, the dynamic mixed and Clark models are found to be slightly more accurate than the dynamic eddy-viscosity model. The second set of LES concerns the mixing layer at a considerably higher Reynolds number and in a larger computational domain. An accurate DNS for this mixing layer can currently not be performed, thus in this case the LES are tested by investigating whether they resemble a self-similar turbulent flow. It is found that the dynamic models generate better results than the non-dynamic models. The closest approximation to a self-similar state was obtained using the dynamic eddy-viscosity model

    Realizability conditions for the turbulent stress tensor in large-eddy simulation

    Get PDF
    The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy simulation, is not positive. Consequently, the turbulent stress tensor based on spectrally filtered fields does not satisfy the realizability conditions, which leads to negative values of the generalized turbulent kinetic energy k. Positive filters, e. g. Gaussian or top-hat, always give rise to a positive k. For this reason, subgrid models which require positive values for k should be used in conjunction with e. g. the Gaussian or top-hat filter rather than with the spectral cutoff filter. If the turbulent stress tensor satisfies the realizability conditions, it is natural to require that the subgrid model for this tensor also satisfies these conditions. With respect to this point of view several subgrid models are discussed. For eddy-viscosity models a lower bound for the generalized turbulent kinetic energy follows as a necessary condition. This result provides an inequality for the model constants appearing in a ‘Smagorinsky-type’ subgrid model for compressible flows

    Shocks in direct numerical simulation of the confined three-dimensional mixing layer

    Get PDF
    The occurrence of shocks in the confined three‐dimensional turbulent mixing layer at convective Mach number 1.2 is established by means of direct numerical simulations. The shocks are generated by the turbulent motions in the flow. Consequently, they can have different shapes and orientations, while they persist for a relatively short time. Furthermore, they are created by different types of turbulent vortices. The shocks do not strongly contribute to the turbulent dissipation. Even at the time when the largest shocks occur, the fraction of the turbulent dissipation due to the shocks is less than 10%

    Lattice results for the decay constant of heavy-light vector mesons

    Get PDF
    We compute the leptonic decay constants of heavy-light vector mesons in the quenched approximation. The reliability of lattice computations for heavy quarks is checked by comparing the ratio of vector to pseudoscalar decay constant with the prediction of Heavy Quark Effective Theory in the limit of infinitely heavy quark mass. Good agreement is found. We then calculate the decay constant ratio for B mesons: fB/fB=1.01(0.01)(0.01+0.04)f_{B^*}/f_B= 1.01(0.01)(^{+0.04}_{-0.01}). We also quote quenched fB=177(6)(17)f_{B^*}=177(6)(17) MeV.Comment: 11 pages, 3 postscript figs., revtex; two references adde

    On the formulation of the dynamic mixed subgrid‐scale model

    Get PDF
    The dynamic mixed subgrid‐scale model of Zang et al. [Phys. Fluids A 5, 3186 (1993)] (DMM1) is modified with respect to the incorporation of the similarity model in order to remove a mathematical inconsistency. Compared to DMM1, the magnitude of the dynamic model coefficient of the modified model (DMM2) is increased considerably, while it is still significantly smaller than as occurs in the dynamic subgrid‐scale eddy‐viscosity model of Germano [J. Fluid Mech. 238, 325 (1992)] (DSM). Large eddy simulations(LES) for the weakly compressible mixing layer are conducted using these three models and results are compared with direct numerical simulation (DNS) data. LES based on DMM1 gives a significant improvement over LES using DSM, while even better agreement is achieved with DMM2

    Metabolism of Poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and Sequences of Genes and Function of the Encoded Proteins in the Synthesis and Degradation of PHA

    Get PDF
    Pseudomonas oleovorans accumulates poly(3-hydroxyalkanoates) (PHAs) after growth on medium chain length hydrocarbons. Large amounts of this polyester are synthesized when cells are grown under nitrogen-limiting conditions. When nitrogen is resupplied in the medium, the accumulated PHA is degraded. In this paper, we describe mutants which are defective in the synthesis or in the degradation of PHA. These mutants were used to select DNA fragments which encode PHA polymerases and a PHA depolymerase. A 25-kilobase (kb) DNA fragment was isolated from P. oleovorans that complements a Pseudomonas putida mutant unable to accumulate PHA. Subcloning resulted in the assignment of a 6.4-kb EcoRI fragment as the pha locus, containing genetic information of PHA synthesis. Mutants in the PHA degradation pathway were also complemented by this fragment, indicating that genes encoding PHA biosynthetic and degradative enzymes are clustered. Analysis of the DNA sequence of the 6.4-kb fragment revealed the presence of two open reading frames encoding PHA polymerases based on homology to the poly(3-hydroxybutyrate) polymerase from Alcaligenes eutrophus. A third open reading frame complemented the PHA degradation mutation and is likely to encode a PHA depolymerase. The presence of two PHA polymerases is due to a 2098-base pair DNA duplication. The PHA polymerases are 53% identical and show 35-40% identity to the poly(3-hydroxybutyrate) polymerase. No clear difference in specificity was found for the PHA polymerases. However, with the pha locus cloned on a multicopy vector, a polymer was accumulated that contains a significantly higher amount of substrate-derived monomers. An increase in the rate of polyester synthesis versus oxidation of the monomers in the beta-oxidation explains these findings
    corecore