6,963 research outputs found

    Optical Doppler shift measurement using a rotating mirror

    Get PDF
    Optical Doppler shift demonstration experiments are not a simple task since the light source cannot usually be moved in a sufficiently smooth and uniform manner to keep the level of noise well below of that of the signal. For that reason most demonstration experiments are usually performed with sound or with microwaves. Previous work have been reported using a moving mirror in order to produce a moving light source, but small perturbation of its trajectory, as small as the optical wavelength, can produce a large noise. Using a rotating mirror, in which one beam is reflected from the advancing side and the other beam is reflected from the receding part of a rotating mirror, can overcome many of the noise generating effects. In the present work we report the construction and operation of a demonstration apparatus for measuring optical Doppler shift based on a rotating mirror.Comment: 11 pages, 5 figure

    Streamwise vortex structure in plane mixing layers

    Get PDF
    The development of three-dimensional motions in a plane mixing layer was investigated experimentally. It is shown that superimposed on the primary, spanwise vortex structure there is a secondary, steamwise vortex structure. Three aspects of this secondary structure were studied. First, the spanwise vortex instability that generates the secondary structure was characterized by measurements of the critical Reynolds number and the spanwise wavelength at several flow conditions. While the critical Reynolds number was found to depend on the velocity ratio, density ratio and initial shear-layer-profile shape, the mean normalized wavelength is independent of these parameters. Secondly, flow visualization in water was used to obtain cross-sectional views of the secondary structure associated with the streamwise counter-rotating vortices. A model is proposed in which those vortices are part of a single vortex line winding back and forth between the high-speed side of a primary vortex and the low-speed side of the following one. Finally, the effect of the secondary structure on the spanwise concentration field was measured in a helium-nitrogen mixing layer. The spatial organization of the secondary structure produces a well-defined spanwise entrainment pattern in which fluid from each stream is preferentially entrained at different spanwise locations. These measurements show that the spanwise scale of the secondary structure increases with downstream distance

    An experimental investigation of two-dimensional thrust augmenting ejectors, part 2

    Get PDF
    The flow-field within a two-dimensional thrust augmenting ejector has been documented experimentally. Results are presented on the mean velocity field and the turbulent correlations by Laser Doppler Velocimeter, surface pressure distribution, surface temperature distribution, and thrust performance for two shroud geometries. The maximum primary nozzle pressure ratio tested was 3.0. The tests were conducted at primary nozzle temperature ratios of 1.0, 1.8 and 2.7. Two ejector characteristic lengths have been identified based on the dynamics of the ejector flow field, i.e., a minimum length L sub m below which no significant mixing occurs, and a critical length L sub c associated with the development of U'V' correlation in the ejector. These characteristic lengths divide the ejector flow field into three distinctive regions: the entrance region where there is no direct interaction between the primary flow and the ejector shroud; the interaction region where there is an increased momentum of induced flow near the shroud surface; and a pipe flow region characterized by an increased skin friction where x is the distance downstream from the ejector inlet. The effect of the coflowing induced flow has been shown to produce inside the ejector a centerline velocity that has increased over the free-jet data

    Large amplitude forcing of a high speed 2-dimensional jet

    Get PDF
    The effect of large amplitude forcing on the growth of a high speed two dimensional jet was investigated experimentally. Two forcing techniques were utilized: mass flow oscillations and a mechanical system. The mass flow oscillation tests were conducted at Strouhal numbers from 0.00052 to 0.045, and peak to peak amplitudes up to 50 percent of the mean exit velocity. The exit Mach number was varied in the range 0.15 to 0.8. The corresponding Reynolds numbers were 8,400 and 45,000. The results indicate no significant change of the jet growth rate or centerline velocity decay compared to the undisturbed free jet. The mechanical forcing system consists of two counter rotating hexagonal cylinders located parallel to the span of the nozzle. Forcing frequencies up to 1,500 Hz were tested. Both symmetric and antisymmetric forcing can be implemented. The results for antisymmetric forcing showed a significant (75 percent) increase of the jet growth rate at an exit Mach number of 0.25 and a Strouhal number of 0.019. At higher rotational speeds, the jet deflected laterally. A deflection angle of 39 deg with respect to the centerline was measured at the maximum rotational speed

    Onset voltage shift due to non-zero Landau ground state level in coherent magnetotransport

    Full text link
    Coherent electron transport in double-barrier heterostructures with parallel electric and magnetic fields is analyzed theoretically and with the aid of a quantum simulator accounting for 3-dimensional transport effects. The onset-voltage shift induced by the magnetic field in resonant tunneling diodes, which was previously attributed to the cyclotron frequency wcw_c inside the well is found to arise from an upward shift of the non-zero ground (lowest) Landau state energy in the entire quantum region where coherent transport takes place. The spatial dependence of the cyclotron frequency is accounted for and verified to have a negligible impact on resonant tunneling for the device and magnetic field strength considered. A correction term for the onset-voltage shift arising from the magnetic field dependence of the chemical potential is also derived. The Landau ground state with its nonvanishing finite harmonic oscillator energy wc/2 \hbar w_c /2 is verified however to be the principal contributor to the onset voltage shift at low temperatures.Comment: 13 pages, and 3 figures. Accepted for publication in Phys. Rev.

    Access to diagnosis and treatment of Chagas disease/infection in endemic and non-endemic countries in the XXI century.

    Get PDF
    In this article, Médicos Sin Fronteras (MSF) Spain faces the challenge of selecting, piecing together, and conveying in the clearest possible way, the main lessons learnt over the course of the last seven years in the world of medical care for Chagas disease. More than two thousand children under the age of 14 have been treated; the majority of whom come from rural Latin American areas with difficult access. It is based on these lessons learnt, through mistakes and successes, that MSF advocates that medical care for patients with Chagas disease be a reality, in a manner which is inclusive (not exclusive), integrated (with medical, psychological, social, and educational components), and in which the patient is actively followed. This must be a multi-disease approach with permanent quality controls in place based on primary health care (PHC). Rapid diagnostic tests and new medications should be available, as well as therapeutic plans and patient management (including side effects) with standardised flows for medical care for patients within PHC in relation to secondary and tertiary level, inclusive of epidemiological surveillance systems

    Application of the coherent state formalism to multiply excited states

    Full text link
    A general expression is obtained for the matrix element of an m-body operator between coherent states constructed from multiple orthogonal coherent boson species. This allows the coherent state formalism to be applied to states possessing an arbitrarily large number of intrinsic excitation quanta. For illustration, the formalism is applied to the two-dimensional vibron model [U(3) model], to calculate the energies of all excited states in the large-N limit.Comment: LaTeX (iopart); 10 pages; to be published in J. Phys.

    Healthy and Livable Pittsburg Initiative: Master of Public Health Culminating Experience

    Get PDF
    Contra Costa Health Services Department of Community Wellness and Prevention sole purpose is to improve the environmental, social and economic conditions that contribute to poor health, and support a quality of life that promotes the health and well being of all residents within the county, with major attention to those underserved. The Healthy and Livable Pittsburg Initiative tries to address those issues within the city of Pittsburg. The project aims to engage certain members of the community within Pittsburg to be involved in the future community action plan, which will improve the lives of every resident in Pittsburg. The first step of the project is to gather the attention of 10 members of the African American community and 10 members of the Latino community. The total of 20 members will play a vital role for the community action plan, which will be held in 2015. The following paper is a summary on a 300- hour fieldwork experience at Contra Costa Health Service’s Healthy and Livable Initiative specifically with the engagement of the community for the future community action plan
    corecore