42 research outputs found

    The mitochondrial elongation factor LeEF-Tsmt is regulated during tomato fruit ripening and upon wounding and ethylene treatment

    Get PDF
    A gene encoding an elongation factor LeEF-Tsmt that participates in the protein synthesis process in mitochondria shows strong expression in ripening fruit as compared to other organs. It is strongly up-regulated during the first stages of the ripening process in parallel with the climacteric rise in respiration. LeEF-Tsmt expression is stimulated by ethylene, wounding and high temperature but ethylene-insensitive mutants exhibit normal expression. Transgenic fruit have been generated in which LeEF-Tsmt has been constitutively up- and down-regulated. Surprisingly, altering the expression of the gene by genetic transformation with antisense and sense LeEF-Tsmt constructs did not affect the pattern of respiration and ethylene production during ripening and upon wounding. In addition, expression of the alternative oxidase gene which is known to play an important role in respiratory climacteric was not affected. Possible reasons for the absence of effect on respiration of variations of LeEF-Tsmt gene expression are discussed

    Role of ethylene on various ripening pathways and on the development of sensory quality of Charentais cantaloupe melons

    Get PDF
    Charentais melons (Cucumis melo L., var cantalupensis Naud.) in which ethylene biosynthesis has been suppressed by an antisense ACC oxidase gene have been used to better understand the role of ethylene in the regulation of the ripening process of climacteric fruit and on the development of sensory qualities. We have shown that a number of biochemical and molecular processes associated with the ripening of climacteric fruit are ethylene-independent. In some cases, such as softening of the flesh, the same pathway comprises both ethylene-dependent and -independent components. The various ethylene-dependent events exhibit differential sensitivity to ethylene. The threshold level for degreening of the rind is 1 ppm, while 2.5 ppm are required to trigger the ethylene-dependent component of the softening process. The saturating level of ethylene for all these events is less than 5 ppm, which is by far lower than the internal ethylene concentrations found in the fruit at the climacteric peak (around 100 ppm). Detachment of the fruit influences the development of respiratory climacteric. Fruit remaining attached to the vine, although producing higher levels of ethylene, exhibit a reduced climacteric rise in respiration as compared to detached fruit. The response of antisense ACO fruit to exogenous ethylene in terms of respiration is higher in detached than in attached fruit. Ethylene-suppressed melons show a severe reduction of aroma volatiles production, particularly in ester production. In the biosynthetic pathway of aliphatic esters, the dehydrogenation of fatty acids and aldehydes appears to be ethylene-dependent. In contrast, alcohol acetylation comprises ethylene-dependent and ethylene-independent components, probably corresponding to differentially regulated alcohol acetyl transferases. In terms of sensory quality, these data show that the extension of shelf-life through the inhibition of ethylene production has some beneficial effects on texture and sugar accumulation but is detrimental for the generation of aroma

    Cross Talk between Type III Secretion and Flagellar Assembly Systems in Pseudomonas aeruginosa

    No full text
    Pseudomonas aeruginosa cytotoxicity is linked to a type III secretion system (T3SS) that delivers effectors into the host cell. We show here that a negative cross-control exists between T3SS and flagellar assembly. We observed that, in a strain lacking flagella, T3SS gene expression, effector secretion, and cytotoxicity were increased. Conversely, we revealed that flagellar-gene expression and motility were decreased in a strain overproducing ExsA, the T3SS master regulator. Interestingly, a nonmotile strain lacking the flagellar filament (ΔfliC) presented a hyperefficient T3SS and a nonmotile strain assembling flagella (ΔmotAB) did not. More intriguingly, a strain lacking motCD genes is a flagellated strain with a slight defect in swimming. However, in this strain, T3SS gene expression was up-regulated. These results suggest that flagellar assembly and/or mobility antagonizes the T3SS and that a negative cross talk exists between these two systems. An illustration of this is the visualization by electron microscopy of T3SS needles in a nonmotile P. aeruginosa strain, needles which otherwise are not detected. The molecular basis of the cross talk is complex and remains to be elucidated, but proteins like MotCD might have a crucial role in signaling between the two processes. In addition, we found that the GacA response regulator negatively affects the T3SS. In a gacA mutant, the T3SS effector ExoS is hypersecreted. Strikingly, GacA was previously reported as a positive regulator for motility. Globally, our data document the idea that some virulence factors are coordinately but inversely regulated, depending on the bacterial colonization phase and infection types

    Non classical secretion systems.

    No full text
    International audienceBacteria use molecular machines or weapons to colonize, invade or fight other bacteria and eukaryotic cells. In addition to these various secretion systems, two different systems that release bacterial compounds have also been described. The first one corresponds to membrane vesicle formation and to long distance delivery of membrane or soluble components. The second system is dependent of the expression of the colicin lysis genes known for releasing cytoplasmic colicins as well as other soluble proteins. Both systems will be described thereafter

    Cdk and the anillin homolog Bud4 define a new pathway regulating septin organization in yeast

    No full text
    International audienceIn budding yeast, the cortical structure formed by the septins is remodeled at the onset of mitotic exit and delineates a specialized compartment dedicated to cytokinesis. How this septin function is spatially and timely regulated remains poorly understood. In this study, we report a role of the anillin-like protein Bud4 in the formation and the disassembly of the double ring structure formed by the septins at the time of cytokinesis. Bud4 acts with Bud3 in this pathway and in parallel with septin phosphorylation by the p21-activated kinase Cla4 and the septin-dependent kinase Gin4. In addition, we show that the function of Bud4 is regulated by the cyclin-dependent protein kinase Cdk1, the master regulator of cell cycle progression. This result suggests that the Cdks, or a locally specific pool of the kinase, may have a role past mitotic exit

    Type II Protein Secretion in Pseudomonas aeruginosa: the Pseudopilus Is a Multifibrillar and Adhesive Structure

    No full text
    The type II secretion pathway of Pseudomonas aeruginosa is involved in the extracellular release of various toxins and hydrolytic enzymes such as exotoxin A and elastase. This pathway requires the function of a macromolecular complex called the Xcp secreton. The Xcp secreton shares many features with the machinery involved in type IV pilus assembly. More specifically, it involves the function of five pilin-like proteins, the XcpT-X pseudopilins. We show that, upon overexpression, the XcpT pseudopilin can be assembled in a pilus, which we call a type II pseudopilus. Image analysis and filtering of electron micrographs indicated that these appendages are composed of individual fibrils assembled together in a bundle structure. Our observations thus revealed that XcpT has properties similar to those of type IV pilin subunits. Interestingly, the assembly of the type II pseudopilus is not exclusively dependent on the Xcp machinery but can be supported by other similar machineries, such as the Pil (type IV pilus) and Hxc (type II secretion) systems of P. aeruginosa. In addition, heterologous pseudopilins can be assembled by P. aeruginosa into a type II pseudopilus. Finally, we showed that assembly of the type II pseudopilus confers increased bacterial adhesive capabilities. These observations confirmed the ability of pseudopilins to form a pilus structure and raise questions with respect to their function in terms of secretion and adhesion, two crucial biological processes in the course of bacterial infections
    corecore