357 research outputs found
Drought imprints on crops can reduce yield loss: Nature\u27s insights for food security
The Midwestern “Corn-Belt” in the United States is the most productive agricultural region on the planet despite being predominantly rainfed. In this region, global climate change is driving precipitation patterns toward wetter springs and drier mid- to late-summers, a trend that is likely to intensify in the future. The lack of precipitation can lead to crop water limitations that ultimately impact growth and yields. Young plants exposed to water stress will often invest more resources into their root systems, possibly priming the crop for any subsequent mid- or late-season drought. The trend toward wetter springs, however, suggests that opportunities for crop priming may lessen in the future. Here, we test the hypothesis that early season dry conditions lead to drought priming in field-grown crops and this response will protect crops against growth and yield losses from late-season droughts. This hypothesis was tested for the two major Midwestern crop, maize and soybean, using high-resolution daily weather data, satellite-derived phenological metrics, field yield data, and ecosystem-scale model (Agricultural Production System Simulator) simulations. The results from this study showed that priming mitigated yield losses from a late season drought of up to 4.0% and 7.0% for maize and soybean compared with unprimed crops experiencing a late season drought. These results suggest that if the trend toward wet springs with drier summers continues, the relative impact of droughts on crop productivity is likely to worsen. Alternatively, identifying opportunities to breed or genetically modify pre-primed crop species may provide improved resilience to future climate change
Advances in field-based high-throughput photosynthetic phenotyping
Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis
To have value, comparisons of high-throughput phenotyping methods need statistical tests of bias and variance
The gap between genomics and phenomics is narrowing. The rate at which it is narrowing, however, is being slowed by improper statistical comparison of methods. Quantification using Pearson’s correlation coefficient (r) is commonly used to assess method quality, but it is an often misleading statistic for this purpose as it is unable to provide information about the relative quality of two methods. Using r can both erroneously discount methods that are inherently more precise and validate methods that are less accurate. These errors occur because of logical flaws inherent in the use of r when comparing methods, not as a problem of limited sample size or the unavoidable possibility of a type I error. A popular alternative to using r is to measure the limits of agreement (LOA). However both r and LOA fail to identify which instrument is more or less variable than the other and can lead to incorrect conclusions about method quality. An alternative approach, comparing variances of methods, requires repeated measurements of the same subject, but avoids incorrect conclusions. Variance comparison is arguably the most important component of method validation and, thus, when repeated measurements are possible, variance comparison provides considerable value to these studies. Statistical tests to compare variances presented here are well established, easy to interpret and ubiquitously available. The widespread use of r has potentially led to numerous incorrect conclusions about method quality, hampering development, and the approach described here would be useful to advance high throughput phenotyping methods but can also extend into any branch of science. The adoption of the statistical techniques outlined in this paper will help speed the adoption of new high throughput phenotyping techniques by indicating when one should reject a new method, outright replace an old method or conditionally use a new method
On the Long-Term Hydroclimatic Sustainability of Perennial Bioenergy Crop Expansion over the United States
Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switchgrass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. The hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States are quantified using the Weather Research and Forecasting Model dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted using seasonally evolving biophysical representation of perennial bioenergy cropping systems within the LSM based on observational data. Deployment is carried out only over suitable abandoned and degraded farmlands to avoid competition with existing food cropping systems. Results show that near-surface cooling (locally, up to 5°C) is greatest during the growing season over portions of the central United States. For some regions, principal impacts are restricted to a reduction in near-surface temperature (e.g., eastern portions of the United States), whereas for other regions deployment leads to soil moisture reduction in excess of 0.15–0.2 m3 m−3 during the simulated 10-yr period (e.g., western Great Plains). This reduction (~25%–30% of available soil moisture) manifests as a progressively decreasing trend over time. The large-scale focus of this research demonstrates the long-term hydroclimatic sustainability of large-scale deployment of perennial bioenergy crops across the continental United States, revealing potential hot spots of suitable deployment and regions to avoid
Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands
Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these exchanges. To better estimate time-varying exchanges of carbon, water, and energy of croplands using the Simple Biosphere (SiB) model, we developed crop-specific phenology models and coupled them to SiB. The coupled SiB-phenology model (SiBcrop) replaces remotely-sensed NDVI information, on which SiB originally relied for deriving Leaf Area Index (LAI) and the fraction of Photosynthetically Active Radiation (fPAR) for estimating carbon dynamics. The use of the new phenology scheme within SiB substantially improved the prediction of LAI and carbon fluxes for maize, soybean, and wheat crops, as compared with the observed data at several AmeriFlux eddy covariance flux tower sites in the US mid continent region. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon uptake (especially for maize) and day to day variability in carbon exchange. Biomass predicted by SiBcrop had good agreement with the observed biomass at field sites. In the future, we will predict fine resolution regional scale carbon and other exchanges by coupling SiBcrop with RAMS (the Regional Atmospheric Modeling System)
Modeling Perennial Bioenergy Crops in the E3SM Land Model (ELMv2)
Perennial bioenergy crops are increasingly important for the production of ethanol and other renewable fuels, and as part of an agricultural system that alters the climate through its impact on biogeophysical and biogeochemical properties of the terrestrial ecosystem. Few Earth System Models (ESMs) represent such crops, however. In this study, we expand the Energy Exascale Earth System Land Model to include perennial bioenergy crops with a high potential for mitigating climate change. We focus on high-productivity miscanthus and switchgrass, estimating various parameters associated with their different growth stages and performing a global sensitivity analysis to identify and optimize these parameters. The sensitivity analysis identifies five parameters associated with phenology, carbon/nitrogen allocation, stomatal conductance, and maintenance respiration as the most sensitive parameters for carbon and energy fluxes. We calibrated and validated the model against observations and found that the model closely captures the observed seasonality and the magnitude of carbon fluxes. The validated model represents the latent heat flux fairly well, but sensible heat flux for miscanthus is not well captured. Finally, we validated the model against observed leaf area index (LAI) and harvest amount and found modeled LAI captured observed seasonality, although the model underestimates LAI and harvest amount. This work provides a foundation for future ESM analyses of the interactions between perennial bioenergy crops and carbon, water, and energy dynamics in the larger Earth system, and sets the stage for studying the impact of future biofuel expansion on climate and terrestrial systems
Predicting biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance
Traditional gas exchange measurements are cumbersome, which makes it difficult to capture variation in biochemical parameters, namely the maximum rate of carboxylation measured at a reference temperature (Vcmax25) and the maximum electron transport at a reference temperature (Jmax25), in response to growth temperature over time from days to weeks. Hyperspectral reflectance provides reliable measures of Vcmax25 and Jmax25; however, the capability of this method to capture biochemical acclimations of the two parameters to high growth temperature over time has not been demonstrated. In this study, Vcmax25 and Jmax25 were measured over multiple growth stages during two growing seasons for field-grown soybeans using both gas exchange techniques and leaf spectral reflectance under ambient and four elevated canopy temperature treatments (ambient+1.5, +3, +4.5, and +6°C). Spectral vegetation indices and machine learning methods were used to build predictive models for Vcmax25 and Jmax25, based on the leaf reflectance. Results showed that these models yielded an R2 of 0.57–0.65 and 0.48–0.58 for Vcmax25 and Jmax25, respectively. Hyperspectral reflectance captured biochemical acclimation of leaf photosynthesis to high temperature in the field, improving spatial and temporal resolution in the ability to assess the impact of future warming on crop productivity
\u3ci\u3eCorrigendum to\u3c/i\u3e “Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands” published in Biogeosciences, 6, 969–986, 2009
In the above mentioned manuscript a mistake in Fig. 11 occured. The corrected version of the figure is as follows
Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging
Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (∼2 m×2 m) in c,max, R2=0.79) maximum electron transport rate in given conditions (J1800, R2=0.59), maximal light-saturated photosynthesis (Pmax, R2=0.54), chlorophyll content (R2=0.87), the Chl a/b ratio (R2=0.63), carbon content (R2=0.47), and nitrogen content (R2=0.49). Model predictions did not improve when using two cameras spanning 400-1800 nm, suggesting a robust, widely applicable and more 'cost-effective' pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials.</p
- …