37 research outputs found

    Cell fate regulation during preimplantation development: A view of adhesion-linked molecular interactions

    Get PDF
    AbstractIn the developmental process of the early mammalian embryo, it is crucial to understand how the identical cells in the early embryo later develop different fates. Along with existing models, many recently discovered molecular, cellular and developmental factors play roles in cell position, cell polarity and transcriptional networks in cell fate regulation during preimplantation. A structuring process known as compaction provides the “start signal” for cells to differentiate and orchestrates the developmental cascade. The proper intercellular junctional complexes assembled between blastomeres act as a conducting mechanism governing cellular diversification. Here, we provide an overview of the diversification process during preimplantation development as it relates to intercellular junctional complexes. We also evaluate transcriptional differences between embryonic lineages according to cell- cell adhesion and the contributions of adhesion to lineage commitment. These series of processes indicate that proper cell fate specification in the early mammalian embryo depends on junctional interactions and communication, which play essential roles during early morphogenesis

    BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo

    Get PDF
    At implantation, the mouse embryo undergoes a critical transformation which requires the precise spatiotemporal control of signalling pathways necessary for morphogenesis and developmental progression. The role played by such signalling pathways during this transition are largely unexplored, due to the inaccessibility of the embryo during the implantation when it becomes engulfed by uterine tissues. Genetic studies demonstrate that mutant embryos for BMPs die around gastrulation. Here we have aimed to dissect the role of BMPs during pre-to post-implantation transition by using a protocol permitting the development of the embryo beyond implantation stages in vitro and using stem cells to mimic post-implantation tissue organisation. By assessing both the canonical and non-canonical mechanisms of BMP, we show that the loss of canonical BMP activity compromises the extra-embryonic ectoderm development. Our analyses demonstrate that BMP signalling maintains stem cell populations within both embryonic/extra-embryonic tissues during pre-to post-implantation development. These results may provide insight into the role played by BMP signalling in controlling early embryogenesis

    The dynamics of morphogenesis in stem cell-based embryology: Novel insights for symmetry breaking

    Get PDF
    Breaking embryonic symmetry is an essential prerequisite to shape the initially symmetric embryo into a highly organized body plan that serves as the blueprint of the adult organism. This critical process is driven by morphogen signaling gradients that instruct anteroposterior axis specification. Despite its fundamental importance, what triggers symmetry breaking and how the signaling gradients are established in time and space in the mammalian embryo remain largely unknown. Stem cell-based in vitro models of embryogenesis offer an unprecedented opportunity to quantitatively dissect the multiple physical and molecular processes that shape the mammalian embryo. Here we review biochemical mechanisms governing early mammalian patterning in vivo and highlight recent advances to recreate this in vitro using stem cells. We discuss how the novel insights from these model systems extend previously proposed concepts to illuminate the extent to which embryonic cells have the intrinsic capability to generate specific, reproducible patterns during embryogenesis

    Inducible stem cell-derived embryos capture mouse morphogenetic events in vitro

    Get PDF
    The development of mouse embryos can be partially recapitulated by combining embryonic (ES), trophoblast (TS) and extra-embryonic endoderm (XEN) stem cells to generate ETX-embryos. Although ETX-embryos transcriptionally capture the mouse gastrula, their ability to recapitulate complex morphogenic events such as gastrulation is limited, possibly due to the limited potential of XEN cells. To address this, we generated ES cells transiently expressing transcription factor Gata4 that drives the extra-embryonic endoderm fate and combined them together with ES cells and TS cells to generate induced ETX-embryos (iETX-embryos). We show that iETX-embryos establish a robust anterior signalling centre that migrates unilaterally to break embryo symmetry. Furthermore, iETX-embryos gastrulate generating embryonic and extra-embryonic mesoderm, and definitive endoderm. Our findings reveal that replacement of XEN cells with ES cells transiently expressing Gata4 endows iETX-embryos with greater developmental potential, thus enabling the study of the establishment of anterior-posterior patterning and gastrulation in an in vitro system.This work was supported by a European Research Council Grant (RG77946)Wellcome Trust (207415/Z/17/Z), Open Philanthropy, Shurl and Kay Curci, and Weston Havens Foundations grants awarded to M.Z.G.; K.Y.C.L. is supported by the Croucher Foundation and Cambridge Trust. F.H. is supported by a European Research Council Grant (695669) and Wellcome Trust (WT108438/C/15/Z). J.D.J. is supported by the Biotechnology and Biological Sciences Research Council

    Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures.

    Get PDF
    Embryonic stem cells can be incorporated into the developing embryo and its germ line, but, when cultured alone, their ability to generate embryonic structures is restricted. They can interact with trophoblast stem cells to generate structures that break symmetry and specify mesoderm, but their development is limited as the epithelial-mesenchymal transition of gastrulation cannot occur. Here, we describe a system that allows assembly of mouse embryonic, trophoblast and extra-embryonic endoderm stem cells into structures that acquire the embryo's architecture with all distinct embryonic and extra-embryonic compartments. Strikingly, such embryo-like structures develop to undertake the epithelial-mesenchymal transition, leading to mesoderm and then definitive endoderm specification. Spatial transcriptomic analyses demonstrate that these morphological transformations are underpinned by gene expression patterns characteristic of gastrulating embryos. This demonstrates the remarkable ability of three stem cell types to self-assemble in vitro into gastrulating embryo-like structures undertaking spatio-temporal events of the gastrulating mammalian embryo.European Research Council (669198) Wellcome Trust (098287/Z/12/Z)
    corecore